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ABSTRACT Internet of Things (IoT) enables a myriad of applications by interconnecting software to
physical objects. The objects range from wireless sensors to robots and include surveillance cameras. The
applications are often critical (e.g. physical intrusion detection, fire fighting) and latency-sensitive. On the
one hand, such applications rely on specific protocols (e.g. MQTT, COAP) and the network to communicate
with the objects under very tight timeframe. On the other hand, anomalies (e.g. communication noise,
sensors’ failures, security attacks) are likely to occur in open IoT systems and can result by sending false
alerts or the failure to properly detect critical events. To address that, IoT systems have to be equipped with
anomaly detection processing in addition to the required event detection capability. This is a key feature
that enables reliability and efficiency in IoT. However, anomaly detection systems can be themselves object
of failures and attacks, and then can easily fall short to accomplish their mission. This paper introduces
a Reliable Event and Anomaly Detection Framework for the Internet of Things (READ-IoT for short).
The designed framework integrates events and anomalies detection into a single and common system that
centralizes the management of both concepts. To enforce its reliability, the system relies on a reputation-
aware provisioning of detection capabilities that takes into account the vulnerability of the deployment
hosts. As for validation, READ-IoT was implemented and evaluated using two real life applications, i.e. a
fire detection and an unauthorized person detection applications. Several scenarios of anomalies and events
were conducted using NSL-KDD public dataset, as well as, generated data to simulate routing attacks.
The obtained results and performance measurements show the efficiency of READ-IoT in terms of event
detection accuracy and real-time processing.

INDEX TERMS Anomaly detection, cloud computing, event detection, fog computing, Internet of Things,

intrusion detection, trust, reputation.

I. INTRODUCTION

Internet of Things (IoT) refers to the ubiquitous network
of heterogeneous objects such as cameras, sensors and
drones [1]. These objects are able to interact and to com-
municate with each other while relying on Internet proto-
cols or other protocols addressing schemes [2] (e.g. IPv4,
IPv6, IEEE 802.15.4, ZigBee, LoRaWAN) and specific mes-
saging protocols (e.g. COAP, MQTT). The ultimate goal
is to implement a common goal that would make up the
so-called IoT applications (e.g. weather forecast, HVAC-
Heating, Ventilation and Air-Conditioning, access control).
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The applications domains of IoT technologies are multiple.
Precision agriculture, smart transportation and healthcare are
among the several examples. [oT is adjustable to almost any
technology capable of providing relevant information such
as about the performance of an activity or about the related
environmental conditions.

A. CONTEXT AND MOTIVATIONS

IoT systems are often critical and latency-sensitive [3]. The
information needs to travel fast from the objects to the soft-
ware through the gateways and the network. Furthermore,
these systems have to be efficient and reliable to manage
handling critical tasks. For instance, for natural disasters
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management, [oT systems must detect interesting events
which are related to the purpose for which the IoT infras-
tructure was designed (e.g. fire, floods, gas leakage) as soon
as possible and make sure not to miss any of them due
to prospective anomalies. Anomalies can be classified into
two categories: (i) Anomalies related to technical or inner
system issues (e.g. communication failure or noise, object
failure or malfunction), and (ii) anomalies related to the
system integrity and security (e.g. malicious attacks, intruder
objects). At run-time, IoT systems may face one or both
anomalies at the same time. In this particular case, the system
accuracy can be easily compromised, and this could cause
damaging effects, important material loss, information theft
and even injuries or people death. Therefore, it is critical
to detect these anomalies, process them as soon as possible
and maintain the system in good condition all the time. For
instance, when technical issues occur, the system should be
able to detect them and recover in an autonomous fashion
(e.g. select and switch to another cluster head if the cur-
rent one breaks down). Similarly, in case of security threats,
the system should be able to detect them while minimizing
the damage (e.g. isolate and disconnect a malicious node
broadcasting erroneous data). Accordingly, it is critical to
provide efficient surveillance systems that are able to detect
such events and anomalies on real-time, raise alerts in a mini-
mum delay and implement appropriate actions to improve the
system reliability and then the detection accuracy (e.g. fire for
fire detection applications, intrusion for monitoring systems).
Interesting events and anomalies are generally considered in
the literature as outliers [4].

In the relevant literature, several work already proposed
to integrate Anomaly Detection Systems (ADS) in IoT (e.g.
see [5]-[8]). However, ADS are generally introduced as stan-
dalone systems with their own management and data storage.
This induces many efforts to connect the ADS to the IoT
system compared to built-in ADS system. Furthermore, ADS
can be themselves subject to failures and attacks, and then fall
short to accomplish their mission. Reliability tools adopted
to supervise [oT sensors and networks should be reused. It is
worth mentioning that the reliability overhead must be mini-
mal since the considered context (i.e. IoT) is often limited in
terms of computing and energy resources [1].

B. CONTRIBUTIONS AND RESULTS

This paper introduces a Reliable Event and Anomaly Detec-
tion Framework for the Internet of Things (READ-IoT for
short). This framework enables accurate detection of outliers
thanks to the adoption of a common management system
and an optimal processing workflow. The proposed approach
relies on cascaded (2 steps) activation of detection compo-
nents. First, a rule-based static detection is considered. Then,
based on the output of the first detection, machine learning
capabilities are used to complement the detection process.
The cascaded detection allows to characterize the detected
outliers. Specifically, known outliers are detected thanks to
arule-based detection, and then machine learning processing
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permits further investigation and characterization of unknown
outliers.

READ-IoT framework proposes an integrated solution for
ADS and EDS. There are at least four advantages to this
integration:

o Building a common and unique management system:
the same provisioning strategies and mechanisms used
for both subsystems ADS and EDS provides admin-
istrators with unified and practical procedures. Obvi-
ously, this considerably decreases the operating cost
and complexity of IoT systems. Basically, the detection
components are deployed following a common opti-
mized deployment plan aiming at reducing latency and
selecting trusted deployment devices. Other common
management components are QoS management and risk
calculation that are shared between ADS and EDS.

« Improving the cooperation between subsystems: since
they are integrated, the two subsystems can inter-
act in real-time without building third-party bridges
between them. When the ADS detects anomalies from
a device or a network, the EDS has to be informed in
real-time to ignore non-trusted sources of information.
The built-in management system, the unified processing
workflow and the common communication infrastruc-
ture eliminate the need for a ’system integrator’ between
the subsystems.

« Improving the data accessibility: by being able to read
data from each subsystem (ADS and EDS) in a central-
ized way, the data is seen as one-piece. This is crucial for
efficient decision making. QoS data is gathered, and IoT
sensors and networks trust evaluation is build. Having
related data from both systems in a centralized way
allows for drawing a more complete and accurate view of
the observed system compared to separate observations.

o Improving the system reliability: data integration fed
from both EDS and ADS allows for building a common
risk management. Untrusted data sources are discarded
from the deployment plan, and the system reliability is
then immediately improved.

To address real-time constraints, READ-I0T is designed in
the hybrid cloud/fog system. It relies on adaptive resource-
aware deployment that takes into account the resources type
(i.e. cloud or fog), location with regard to the IoT application
(i.e. in core network, or at the edge, close to the data sources),
as well as, workload over these resources (i.e. available mem-
ory, processing capabilities and network bandwidth). For
validation and evaluation purposes, the READ-IoT frame-
work was implemented, and several real life IoT applications
were provisioned over it. The performed experiments show
that: (1) combining both event and anomaly detection in IoT
systems improves the system reliability, (2) the cascaded
activation of rule-based and machine learning processing
qualifies better the detected outliers, (3) the reputation-aware
deployment enforces ADS and EDS reliability and then the
detection accuracy and (4) the resource-aware provisioning
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FIGURE 1. loT system reference topology.

over hybrid cloud/fog environments enables addressing real-
time constraints and reduces reliability overhead.

C. STRUCTURE OF THE MANUSCRIPT

Section II introduces background information. Section III
reviews the related work in the literature. Section IV describes
the READ-IoT framework architecture. Section V discusses
the designed algorithms and models for ADS, EDS and place-
ment. Section VI shows the developed prototype architecture
and tools. Section VII details the evaluation experiments
scenario and results. Finally, Section VIII concludes the paper
and presents the work perspectives.

Il. BACKGROUND INFORMATION
This Section introduces fundamental and background infor-
mation that are necessary for the understanding of this work.

A. IoT FOR SURVEILLANCE SYSTEMS
IoT applications assist enterprises and organizations to realize
the potential of the Internet of Things. Businesses are relying
on IoT applications to optimize workflows and enhance the
control of operations at each step of the supply chain [10].
In the particular case of surveillance systems, IoT turns
security surveillance into smart safety and security manage-
ment [11]. In the near past, Closed-Circuit Television Sys-
tems (CCTV) were the most common used technology in
surveillance. However, such systems can only display and
record video footage. They do not understand what they are
watching and are not able to do anything about it. Nowa-
days, the IoT surveillance systems are able to automatically
detect threats (e.g. smoke, intrusion) and make the right calls
to process them. They rely on machine learning and com-
puter vision capabilities [12]. IoT surveillance applications
consume smart devices data traveling from the edge of the
network, execute appropriate programs, and produce added
values services (e.g. visualization, prediction) and/or suitable
actions for actuators such as robots and drones.

Fig. 1 depicts a classical IoT system architectural
overview [13]. The same is valid for surveillance applica-
tions. It consists of the following entities:
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o IoT nodes (e.g. Sensors and Actuators): Sensor Nodes
(SN) are responsible for gathering and collecting data
such as temperature, humidity, gas and motion. Actuator
Nodes (AN) as fire extinguishers are IoT devices that
may be used to react to detected events.

o Cluster Heads (CH): responsible for receiving and for-
warding data from a given set of IoT nodes (cluster)
to IoT gateways. They can be involved in monitor-
ing and analyzing tasks. Furthermore, they may be
equipped with cameras to survey the whole cluster
zone.

o IoT Gateways: responsible for making the bridge
to cloud servers and might be involved in analysis
task.

o Cloud: responsible of data analysis and storage.

B. CLOUD AND FOG COMPUTING

The American National Institute of Standards and Technol-
ogy (NIST) defines cloud computing as a novel model for
enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources (e.g.
networks, servers, storage resources, applications, services,
etc.) [14]. These resources should be swiftly provisioned
and released with minimal management effort and according
to the pay-as-you-go model [18]. Cloud computing can be
defined as a specialized distributed computing paradigm.
This paradigm differs from the traditional ones since: (1) it is
massively scalable, (2) it can be encapsulated as an abstract
entity that delivers different levels of services to customers
outside the cloud, (3) it is driven by economies of scale, (4)
it can be dynamically configured (via virtualization or other
approaches) and (5) it can be delivered on-demand
[14]-[17]. The associated service delivery models to cloud
computing are Infrastructure-as-a-Service (IaaS), Platform-
as-a-Service (PaaS) and Software-as-a-Service (SaaS).
Application providers use platforms offered as Paa$S, to provi-
sion applications. These applications are offered to end-users
(or possibly to other applications) as SaaS. Platforms add
abstraction to the infrastructure offered as IaaS. The infras-
tructure is the actual dynamic pool of virtualized resources
used by applications [9].

Cloud computing is not completely suitable to provision
IoT applications [10]. The major limitation is related to
the connectivity between the computing cloud resources in
the core network and the devices at the edge. On the one
side, communications between loT applications in the cloud
and their related object is achieved through the Internet.
On the other side, IoT applications are latency-sensitive [19].
Fog computing is a computing paradigm that has been
recently introduced to tackle these limitations [20]. It extends
the cloud architecture and provides additional computing
resources at the edge of the network, close to the object [20],
[41]. The ultimate goal is to reduce the latency and processing
delays for applications such IoT when being provisioned over
hybrid cloud/fog environments.
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C. ANOMALY AND EVENT DETECTION SYSTEMS

In this work, ADS (Anomaly Detection System) is distin-
guished from EDS (Event Detection System). The two ter-
minologies can be confused in the literature to designate the
detection of rare and exceptional events [42]. ADS consists in
the identification of what can prevent a system from accom-
plishing its specified functions like nodes failures, errors,
malfunctions and security attacks. EDS rather concerns the
identification of events of interest and is identified in the spec-
ifications of an IoT surveillance system, like the detection of
fire, flood, unauthorised person intrusion, etc.

For the purpose of anomaly detection, there are three
main approaches: (1) rule-based detection, (2) anomaly-
based detection and (3) reputation systems [53]. Rule-based
approaches rely on pre-defined rules to classify captured
packets as normal or abnormal. Although they detect well-
known anomalies in high accuracy, they are unable to detect
new attacks so as the attack signature database should always
be updated [27]. Anomaly-based approaches are generally
based on machine learning algorithms. They are used to
detect anomalies and malicious activities after a training
phase to construct a model that distinguishes normal from
abnormal data [5], [28]. Although these approaches can
detect new attacks, they have the disadvantage of generat-
ing false positives in a higher rate rather than rule-based
approaches. Reputation systems generally rely on monitor
nodes to supervise and evaluate their neighbors activities.
Trust values are affected to each node. They are calculated
according to the node observed behavior like data aggre-
gation and routing [29], [30]. When a trust value is under
a well-defined threshold, the associated node is considered
malicious. Each approach has its key strengths and draw-
backs. Therefore, hybrid approaches combining the previous
mentioned approaches [31], [32] were adopted in order to
maximize the detection rate (DR), minimize the false positive
rate (FPR) and preserve energy consumption.

Several ADS [7], [8] are used in recent IoT systems to
detect anomalies and malicious nodes in the network and pro-
vide countermeasures to mitigate them. Consequently, they
are considered as a solution to improve the system reliability.
Nevertheless, how to make sure that they are themselves
reliable? This “hen and eggs” issue shows that, in addition
to the integration of EDS and ADS, additional reliability
enforcement techniques are needed. In this current work,
a trust management system is built on top of ADS and EDS
for reliability enforcement.

D. SUBSYSTEMS INTEGRATION FOR BETTER RELIABILITY
Generally speaking, software integration consists of data inte-
gration, process integration and analysis and decision integra-
tion [21]. Putting the subsystems together aims at improving
business processes and simplifying the administrator work.
Systems integration targets the optimization of three param-
eters:
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o Time: using several systems equals the necessity of
switching from one platform to another in order to per-
form specific business tasks.

o Data: the greatest advantage of systems integration is
improved data accessibility. Since data is considered
as a whole, system integration leads to better decision-
making and business growth in general.

« Management costs: by using just one management appli-
cation instead of several, administrators spend less time
introducing data to the system, deploying and updat-
ing functional processes and thus, reducing energy con-
sumption and engineering cost.

In the context of reliability, a lot of works concentrate
on the integrated reliability systems of both software and
hardware [22], [23]. In addition to the advantages listed so
far, subsystem integration allows for the detection of more
failures than the subsystems separately. For example, soft-
ware failures generated by hardware failures and hardware
failures caused by software failures are detected in the inte-
grated subsystems and not detected if the subsystems are
separately considered [24]. Other works integrate anomaly
and failure detection subsystems of multi domains in a sin-
gle system [25]. The integration allows the optimization of
resources and the reduction of management cost. IoT is itself
considered as an integrated set of subsystems for observing
different targets and different domains. However, manage-
ment subsystems are still considered as ’silos’ with different
targets and tools. In this work, we propose the integration
of ADS and EDS in a common system to profit from the
subsystem integration advantages in terms of resource opti-
mization, management optimization and improved reliability
of the overall system.

Many software architecture solutions allow for achieving
subsystem integration [26]. In our work we adopt an archi-
tecture where data storage is centralized, a publish/subscribe
broker is adopted as a communication middleware for real-
time interaction and a common management system is inte-
grated for ADS and EDS deployment, monitoring and update.

IIl. RELATED WORK

Our contributions are related to three main fields of research
in IoT systems: Hybrid fog/cloud provisioning, Event and
Anomaly detection systems and Trust and Reputation sys-
tems. Recent works in each domain are described hereafter.
READ-IoT is shown to take the best practices and techniques
in IoT for a reliable and efficient ADS and EDS integration
while related works generally address one single subsystem
at one time.

A. IoT APPLICATIONS PLATFORMS IN CLOUD/FOG
ENVIRONMENTS

Many works provide an overview of the core issues, chal-
lenges and general frameworks for IoT services orchestration
over Edge, Fog and Cloud [33]-[36]. Authors in [37] pro-
pose a novel optimization model minimizing the total cloud
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provider cost to serve client requests by shifting some of the
work to the fog Node. The model is formulated as a Mixed
Integer Linear Problem (MILP) with an objective function
minimizing the total computational cost (load) of requests
using performance and QoS parameters. In [38], authors
propose an architecture entitled SoFA, which is a Spark-
oriented Fog architecture that leverages Spark functionalities
to provide higher system utilization. This method leverages
the remaining processing capacity of edge devices.

The authors in [39] propose hydle, a hybrid deployment
framework for surveillance system. The hybrid deployment is
based on using different data source types (WSN and MWSN)
and hosting nodes (fog and cloud nodes). The approach has
been evaluated in a surveillance application using incremen-
tal layered Deep Learning-based image processing. Results
show processing delay optimization using a hybrid fog and
cloud provisioning with different network and processing
metrics. In [40], authors propose an architecture for a Plat-
form as-a-Service (PaaS) to automate applications provision-
ing in a hybrid fog/cloud environment. This architecture was
used in [41] to provide a demo of the proposed PaaS by
deploying an IoT healthcare application components across
fog and cloud nodes. The demo also depicts the support of
the whole application life cycle (i.e. developing, deploying
and managing).

The proposed solutions are proven efficient, and the under-
lying principle consists in resource-aware deployment and
orchestration for reducing resource consumption and pro-
cessing delays. In our work, the deployment is also driven by
targets’ trust level in addition to resource availability. Another
difference is the adoption of the same hybrid deployment for
both EDS and ADS.

B. ANOMALY AND EVENT DETECTION SYSTEMS IN loT

Authors in [43] propose a pattern-sensitive partitioning model
for IoT sensors data streams capable of paralyzing data pro-
cessing in order to achieve a high detection accuracy for
event pattern in a minimum delay. Authors in [44] extend
Sipresk, a big data analytic platform, to detect, classify and
report events in Ontario highways in a minimum delay.
In [45], authors propose an anomaly detection system for
asynchronous events coming from a fleet of devices. The
system defines an analysis workflow for each specific use
case, and it is deployed as a Cloud Web service exposing
all functionalities via REST API. Authors in [46] propose
a novel anomaly detection method, called Fog-Empowered
anomaly detection, using an efficient hyper-ellipsoidal clus-
tering algorithm. They also use a fog computing architecture
to minimize latency in anomaly detection. In [47], authors
propose a Deep-Learning algorithm to detect malicious traffic
inIoT networks. The IDS was proven efficient against various
attacks in IoT networks and was deployed as a standalone
device in the network. A lightweight distributed IDS in a
three-layered IoT architecture including the cloud, fog and
edge layers was proposed in [48]. Authors in [49] propose
SVELTE, a distributed intrusion detection system for IoT that
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detects communication attacks in 6LoWPAN networks using
RPL as a routing protocol. Recent works [S0]-[52] focus
mainly in detecting anomalies for large scale systems using
Big Data technologies. In our previous work, READ [53],
a reliable event and anomaly detection system for WSN
was proposed. Although the proposed system was proven
to be reliable ensuring a high detection rate and low energy
consumption, it focuses only on WSN and does not consider
IoT challenges as security attacks where the gateway is con-
nected to cloud servers, and IP protocol is used. In our recent
work [54], an anomaly detection system that considers both
WSN and IoT anomalies detection using machine learning
components depending on nodes capabilities is proposed.
However, similar to the other cited works, ADS is used for
reliability but the reliability of ADS itself is not addressed.
In this work, the reliability of both the ADS and EDS is
enforced with reputation-based deployment.

C. TRUST AND REPUTATION SYSTEMS IN IloT

Trust and reputation systems are mainly used for monitor-
ing task in WSN and IoT systems. They rely on monitor
nodes or watchdogs that are used to supervise and evaluate
their neighbors behaviors. Trust values are calculated for
the nodes based on their observed activities, and then deci-
sion for data aggregation or routing is taken based on this
evaluation [55], [56]. Many works address the problem of
finding the compromise between resource consumption and
reputation calculation like in [57] where monitors are peri-
odically changed to optimize their energy. Other works aim
at automating the reputation management to reduce admin-
istration cost like in [58] where authors present an architec-
ture pattern for trusted orchestration management (TOM) in
edge and cloud using a blockchain-based security solution.
In READ-IoT, the reputation system enforces both EDS and
ADS reliability.

We present in Table 1 the main anomaly and event
detection solutions listed in this section. We summarize the
main key points and strengths of these works and clas-
sify them following three main criteria: The system goal
(Event or anomaly detection) and deployment reliability tech-
niques.

The related work study shows clearly that IoT systems are
designed either as EDS or ADS. To our knowledge, few works
propose an integrated solution as we propose in READ-
IoT. Furthermore, ADS systems are deployed for reliability,
but they are supposed to be reliable themselves. This table
highlights, therefore, the contribution of our work compared
to related ones: an integrated ADS and EDS with an enforced
reliability.

IV. READ-loT DESIGN

This Section describes the READ-IoT framework design.
It first introduces the system architecture with its differ-
ent layers and components. Then, it details the several
designed procedures that supports every single phase of
the IoT applications life-cycle. The design is based on the
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TABLE 1. Summary of recent related work about anomaly and event detection in loT.

Detection Reliable Deployment
Work reference Key points/Strengths Event Anomaly | Static Dynamic | Risk Resource
driven driven
Sharkh et al. [37] | Optimized hybrid fog/cloud | v v v
provisioning
Ben Abdallah et al. | Efficient incremental layered | v v v
[39] DL-based image processing
Yangui et al. [40] | Support of the whole 10T ap-| v/ v v
plication life cycle
Cramer et al. [45] |Cloud Web service via REST N v
API
Lyu et al. [46] Efficient hyper-ellipsoidal v v v
clustering algorithm at fog
resources
Thamilarasu et al.|Efficient DL algorithm for IoT v v
[47] anomaly detection
Rettig et al. [51] Online Anomaly Detecting for v v v
streaming application
Abdellatif al. [S7] | Adaptable and energy efficient v v v v
monitoring for WSN (limited
to WSN)
Pahl et al. [58] Block-chain based solution for v v v
a trusted orchestration in fog
and cloud

service computing life-cycle model introduced in [59]. This
reference stipulates that services and applications, includ-
ing IoT applications provisioning process consists of three
phases: (i) Development, (ii) deployment and (iii) manage-
ment. The READ-IoT architecture specification is inline with
this model. The development phase consists of developing,
testing and building the application executables. Application
executables include all the files needed to execute the applica-
tion once deployed (e.g. source code, configuration files). The
READ-IoT framework provides the developer with an appro-
priate Integrated Development Environment (IDE), as well
as, all the necessary libraries and resources implementing the
required machine learning algorithms for anomaly detection,
reputation management, etc. These libraries are offered as
adapted development kits that could be used to assist devel-
opers at development time. The deployment phase consists
of: (1) Allocating and making ready the READ-IoT resources
(e.g. object, hosting containers, storage services) needed to
host and execute the end-user application and (2) uploading
its executables over these resources. The management phase
consists in: (1) Activating the deployed IoT application in
order to make it available, (2) executing it when receiving
requests and (3) performing appropriate management opera-
tions when needed at run-time (e.g. migrate, scale up/down).

A. HIGH-LEVEL ARCHITECTURE
Fig. 2 shows the target [oT system (READ-IoT) that includes
IoT nodes, two deployment areas (fog and cloud) for data
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processing, storage and analysis, management modules and
application developers and subscribers. IoT nodes which are
organized in a cluster based topology communicate with their
relative cluster heads (CH) using different protocols (ZigBee,
LoRaWAN, 6LoWPAN, etc.). CHs aggregate and send data
to gateways (GWs) which have local storage and analytic
capabilities. Also, CHs have cameras installed to survey their
cluster zones. In fog, processing nodes are CHs, GWs, local
machines or virtual machine nodes. On the cloud, processing
nodes are virtual machines instances hosted in a cloud plat-
form with high performance and analysis capabilities. The
processing nodes permit to host and execute EDS or ADS
components following a deployment plan. The implementa-
tion of these components depends on the supervised system.
In our case, two kind of implementation are proposed: rule
based for detecting well defined events or anomalies and
machine-learning based for enforcing rule-based detection
and for new non-expected event or anomaly discovery.

On top of IoT supervision system, a management layer
contains the necessary modules that permit to monitor the
IoT nodes and network, calculate and update the best deploy-
ment plan of processing components. Application subscribers
receive notifications and alerts for events of interest and
anomalies.

Supervised nodes and the managed system communicate
thanks to a publish/subscribe communication model fol-
lowing a set of topics of an MQTT broker. Topics con-
cern collected data, detected events or anomalies, QoS
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data or management data like deployment plans. The choice
of a publish/subscribe communication breaks any depen-
dency between the system nodes, and then allows to easily
add or remove sensors, gateways or cloud processing units.
The controller is the orchestrator and the contact point in the
management layer while master components are the contact
points on the processing nodes. Data and calculated infor-
mation are exchanged between master components and the
controller through the MQTT broker.

ADS or EDS components are handled with the same
deployment strategy and workflow logic which reduces their
administration cost and simplifies their deployment and
update.

B. PROCEDURES

The following describes procedures designed as part of
READ-IoT specification to implement the phases : develop-
ment, deployment and management.

1) DEVELOPMENT PROCEDURE

This layer hosts an Integrated Development Environment
(IDE) that provides developers with the necessary develop-
ment tools (e.g. development kits, libraries, APIs). This IDE
permits developing, composing and testing application com-
ponents taking into account the properties and capabilities
of the target placement domain (either fog or cloud). The
developed component, planned to be deployed as part of an
application, is tested, validated then pushed to be handled by
the deployer module.

For machine learning components, developers are pro-
vided with a pipeline implementing different known super-
vised algorithms for best features selection and appropriate
algorithms choice based on accuracy metric. The training
phase and model generation should be updated based on data
manipulated in the application. The collected data should be
extracted and formatted in comma-separated values. Once a
model is generated, it should be updated in run-time based
on new arriving data. For rule based components, developers
are provided with templates implementing rules for detecting
specific attacks on WSN and IoT. The rules are updated
regularly based on newly discovered attacks.

2) DEPLOYMENT PROCEDURE

Once calculated or updated, the deployment plan is com-
municated to the master nodes. A placement flow of EDS
and ADS components is described (on fog and cloud nodes).
The deployer deploys components as docker containers in
the dedicated processing nodes. Then, the containers are
run as web services. When an application execution flow
ends, results are sent by the last executed component via
MQTT publish service. In case of an anomaly, the reputation
values of nodes are updated. In case of a detected event,
the controller sends the information to the MQTT broker and
activates the actuator nodes for event handling by sending the
information to its relative gateway. Also, subscribers could
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receive alerts from the broker through the event detection
topic.

3) MANAGEMENT PROCEDURE

The management process is handled by five main modules:
deployer, controller, QoS manger, risk manager and storage
manager.

« Deployer: A repository (e.g. docker [60] private hub)
keeps track of EDS and ADS component description
(related application, order of execution in the applica-
tion, performance requirement and desired placement)
in a registry (e.g. JSON or XML file). The deployer
calculates and updates a placement plan and deploys
components as docker containers in the dedicated pro-
cessing nodes. It uses QoS information updated by QoS
manager, the reputation of nodes updated by the risk
manager and the list of available resources (fog/cloud
processing nodes) information that is regularly updated
by the controller. At regular interval, it calculates the
best placement plan for EDS and ADS component place-
ment based on available resources. Then, it communi-
cates this deployment plan to the controller whenever it
is ready.

o Controller: It interacts with QoS manager and Risk man-
ager to receive information about nodes QoS and repu-
tations and update the resource registry. It interacts with
the deployer to provide resource information (availabil-
ity, QoS, reputations) and to obtain updated deployment
plan. It communicates with the master nodes to get EDS
and ADS data.

o Qos manager: This module checks and updates regularly
nodes quality of service data (availability, communica-
tion link bandwidth and busyness). The availability of
a node is verified thanks to ICMP ping messages. The
communication link is checked by both Time-to-live
ICMP ping parameter and head/get/put HTTP command
execution time using a light HTTP server. The node is
busy when a component is assigned to it for deployment.

o Risk Manager: It is in charge of calculating and updating
reputation values of supervised nodes.

« Storage manager: It subscribes to the topic raw data to
receive all published IoT data and store it in a scalable
database.

V. READ-loT ALGORITHMS AND MODELS

This Section presents main READ-IoT algorithms (place-
ment calculation and cascaded detection) and models. The
algorithm of placement calculator deploying k components
(Cq,..,Cx) over n fog nodes (FNji,...,FN,) and m cloud
nodes (CN7y,...,CNy,) is shown in Algorithm 1. Symbols are
described in Table 2. Mainly, execution of heavy compo-
nents as machine learning based components is carried out
in cloud [61] since more resources are needed to ensure a
faster processing time. Furthermore, the choice depends on
the communication link bandwidth to ensure a minimum
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delay in sending data and receiving results from the cloud.
Only nodes with reputation score over a certain threshold are
elected for deployment in order to avoid compromised or sus-
picious nodes. Reputation threshold and the execution fre-
quency of the algorithm are set by administrators, and depend
on application security requirements and the environment
risk. Finally, for faster execution, when the node is busy
and a component is assigned to it for deployment, our strat-
egy consists in favoring the free remaining nodes to avoid
overhead.

A. CASCADED DETECTION APPROACH

Fig. 3 shows READ-IoT unified processing of both EDS and
ADS. They both inherit from a parent class depending on the
application risk and execute the same workflow. They receive
data from IoT sources (SN, CH, GW) and process them either
on the fog or on the cloud following the deployment plan.
Fig. 4 depicts READ-IoT flowchart for event and anomaly
detection. The event detection process is based on sensing
data, whereas anomaly detection process is based on com-
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munications data (actions 1 and 5). The rule based detector
permits to check whether there is an event/anomaly or not
following specific rules (actions 2 and 6). For example, for
the use case fire detection, if the temperature/humidity are
higher/lower than certain thresholds, a fire event is triggered
by the rule based detector. Therefore, the output of the rule
based detector is binary ' YES’ or "NO’). The machine learn-
ing detector is executed after that according to the result of the
rule based detector and depending on the use case (actions
3 and 7).

o For the fire detection use case, if the binary result of
the rule based detector is ’NO’, a double check is done
by ML detector to detect unknown fluctuations that are
not detected by the rule based detector. For instance,
temperatures in summer and winter are different. Also
temperatures at night and during the day are different.
So, rules may not be suitable for such changes’ detec-
tion, while a model update will detect such changes.
If the output of the rule based detector is *YES’, there is
no need to check using the ML component. The output
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of the machine learning component for the fire detection
use case is a binary class CYES’ or 'NO’).

« For the unauthorized person detection use case, if the
rule based detector outputs *YES’ which means a motion
was detected, the machine learning detector is executed
following the rule based detector to identify objects in
images taken by camera, so its output will be a class
(human, animal, vehicle, etc.). If it is the class human,
the ML detector sends the final results ’YES’, otherwise,
it sends "NO’.

« For the anomaly detection use case, the rule based detec-
tor is executed to detect if there is an anomaly. For
instance, if a malicious node does a selective forwarding
attack (does not forward correctly received packets),
the rule based detector outputs *YES’ if it detects it.
In contradiction, if it outputs 'NO’, further investigation
for anomaly using the machine learning detector is done.
This component outputs *YES’, whenever the classifier
detects an attack and "NO’ otherwise.

Based on the received result, the decision maker sends
appropriate notifications about the event/anomaly (actions
4 and 8). Management modules rely on QoS data, resources
information and their reputation values to update the deploy-
ment plan that permits the execution of detection components
over selected nodes (actions 9,10 and 11). Also, received
data are stored in database (action 12). End users receive
notifications on events/anomalies they subscribe to (action
13).

Algorithm 1: Placement Calculation Algorithm

Result: Placement Plan e.g. C1 on FNy, C; on FN3, C3
on CN3,...,Cr on CN,
1 Inputs: resources=[FN1, ..., FN,, CNy, .., CNy,],
components=[C7y, ..., C¢], availableNodes=[]
if environment is vulnerable then
‘ set timeperiod = tvulenerable
else
‘ set timeperiod = tnonvulenerable
end
while time = timeperiod do
for N; in resources do
check-availability(V;)
if N; is available then
availableNodes.add(N;)
end
end
Call Dijkstra_Risk_Aware(availableNodes,
components)

e X NN R WN

e e
W N = O

end

—
wm

Fig. 5 depicts the detection process for each specific use
case. As shown in Fig. 5 (a), EDS relies on three main
components: (1) Rule Based Event Detector (RB-ED): this
component has pre-defined rules for detecting events as fires
based on configurable thresholds. As an example, when a
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temperature is higher than a threshold th-t (e.g. 57 °C)
and the humidity is lower than a threshold th-h (e.g. 30%),
a fire detection event is triggered, (2) Machine Learning
Event Detector Component (ML-ED): detects events using
machine learning techniques. It is triggered by RB-ED only
when it does not detect any event, (3) Event Decision Maker
(EDM): When the event is confirmed by one of the two pre-
vious detectors, EDM checks the source node reputation and
reacts to detected events by sending notifications and alerts.
For unauthorized person detection, Fig. 5 (b) describes the
detection process which starts with the RB-ED component
(Motion detector). When a motion is detected, the ML-ED
permits to analyze a picture taken and verifies if a person
is present or not. The EDM sends the notification when the
person detection is confirmed. The use of a hybrid detec-
tion technique combining rule based and machine learning
results [31], [62] has the advantage of minimizing false alerts
and increasing the detection rate. Like EDS and as shown
in Fig. 5 (c), ADS relies on three main components: (1)
Rule Based Anomaly Detector (RB-AD): this component
has pre-defined rules for detecting communication anoma-
lies (CA) like hello flooding attacks, selective forwarding
attacks (SFA) and blackhole attacks (BHA) as used by [31],
(2) Machine Learning Anomaly Detector Component (ML-
AD): this component detects anomalies and attacks using
machine learning techniques e.g. One Class Support Vector
Machines (OCSVM) for WSN anomalies, Deep Learning for
IoT anomalies as described in [54]. The choice of OCSVM
and Deep Learning was motivated by lessons learned from
comparative studies and works related to this field. The
comparative study in [5] demonstrates OCSVM efficiency
in WSN anomaly detection in comparison with different
machine learning techniques for anomaly detection. When it
comes to the use of deep learning, the fact that this technique
is known in the community as very efficient in detecting
IP network intrusions was considered [63]. (3) Anomaly
Decision Maker (ADM): this component permits to react
to detected anomaly by sending notifications and alerts to
system administrators for malicious nodes eliminating. Also,
its output is used to update nodes reputations. READ-IoT
cascaded detection protocol is summarized in Algorithm 2.

B. READ-IoT REPUTATION MODEL

READ-IoT uses a reputation system that keeps track of all
nodes (data sources and deployment nodes) reputation values
using the Beta function [64]. Let s be the number of successful
past actions for a Node N;, and let f be the number of its
unsuccessful past actions. Then, the reputation of the node
RN; can be estimated as shown in the following equation:

RN =G+ 1D/s+f+2) (1)

For rule-based detection, the value of s is incremented
whenever a rule is checked as successful. Inversely f is incre-
mented if the rule is not respected. Basically for Selective For-
warding Attack (SFA), s is incremented when a node forwards
correctly a received packet. When the node drops the packet,
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TABLE 2. Symbols and notations.
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+Machine Learning Component(} +Machine Learning Component()
+Decison Making Component() +Decison Making Componenti)

FIGURE 3. READ-IoT as a unified system.

f is then incremented. For machine learning detection, s is
incremented whenever a packet is classified as normal. If the
packet is classified as malicious f is incremented.

Algorithm 2: READ-IoT Cascaded Detection Algorithm

1 if environment is vulnerable then
2 set tperiodAnomaly, THsAnomaly = tvulAnomaly,

THsvulAnomaly

3 set tperiodEvent, THsEvent = tvulEvent,
THsvulEvent

4 else

5 set tperiodAnomaly, THsAnomaly =
tmonvulAnomaly, THsnonvulAnomaly
6 set tperiodEvent, THsEvent = tnonvulEvent,

THsnonvulEvent

7 end

8 while True do

9 check (lastplacementplan)

10 if time= tperiodAnomaly then

11 call ADS (THsAnomaly)

12 /* Reputation values updated */
13 else
14 if time= tperiodEvent then
15 call EDS (THsEvent)
16 /* Notifications sent and actuators activated

sk

17 end !
18 end

19 end

C. READ-IoT DEPLOYMENT MODEL

The problem of latency minimizing is modeled using
Dijkstra’s algorithm [39], [65], [66] to find the optimal
deployment plan that optimizes the end to end delay of
detection and response. In our model, in addition to the delay
constraint, the deployment risk constraint is considered to
guarantee a secure deployment based on nodes reputations
(Dijkstra_Risk_Aware). Fig. 6 describes the optimal solu-
tion as the shortest path delay in executing the application
component flow in the hybrid fog/cloud environment and the
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Symbol Description

C; Component number ¢

N; Cloud of fog Node number ¢

CN; Cloud Node number 4

FN; Fog Node number ¢

environment The status of the surveyed environment

either vulnerable or nonvulnerable
timeperiod The time period of calculating a
new placement plan which may be
tvulnerable if the environment is
vulnerable or tnonvulnerable if it is
not

The time period of executing Anomaly
detection components which may be
tvul Anomaly if the environment is vul-
nerable or tnonvul Anomaly if it is not
Thresholds used by the anomaly de-
tection components which may be
T H svul Anomaly if the environment is
vulnerable or T'H snonvul Anomaly if
it is not

The time period of executing Event
detection components which may be
tvul Event if the environment is vulner-
able or tnonvul Event if it is not of
Thresholds used by the event de-
tection components which may be
T HsvulFEvent if the environment is
vulnerable or T'H snonvul Event if it is
not

lastplacementplan| The last placement plan

tperiod Anomaly

T HsAnomaly

tperiod Event

THsFEvent
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FIGURE 4. READ-IoT flow chart.

notification of the end user (EU). Mainly two different delays
are considered: latency in communication with a deployment
node Ni (LcN;) and latency in processing a component C;
over the deployment node N; (L, C;N;). The end to end delay
of deployment of an application using three components C1,
C2 and C3 in the fog/cloud environment over three nodes
N1, N2 and N3 that may be located in fog or cloud and with
reputation values RN; that should be higher than a prede-
fined threshold TH is shown in the following optimization
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problem:

min(End to End delay)
st.RN;>TH, i=1,2,3. )
3
End to End delay = Z (LeN; + LpGiN;) + LeNAEU
ij=1

3

VI. READ-IoT AND USE CASES IMPLEMENTATION

This Section presents some details about READ-IoT imple-
mentation with a description of the software tools and evalu-
ation metrics.

A. DEVELOPMENT IDE

EDS and ADS were developed using WING PYTHON
IDE. They were deployed as REST Web services docker
containers in the hybrid fog/cloud environment as Event
Detectors (ED) or Anomaly Detectors (AD). Tensorflow
and Scikit-learn PYTHON libraries were used in develop-
ing the machine learning components. Furthermore, READ-
IoT modules as deployer, controller, QoS Risk and storage
managers were developed using the same IDE. A dedicated
machine in the local network was used mainly for manage-
ment purpose (calculating and updating the placement plan).
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TABLE 3. AWS used EC2 instances characteristics.

Name| Model vCPU Mem Network

(GiB)  |Performance
CN1 |t2.]arge |2 8 Low to Moderate
CN2 |t2.xlarge |4 16 Moderate
CN3 |t2.2xlarge |8 32 Moderate

B. PROOF OF CONCEPT

In order to validate the proposed architecture and provide a
proof of concept, a real IoT system was implemented and
deployed it in the Polytechnic School of Tunisia. Fig. 7 shows
a high-level view of the proposed prototype. Two WSN clus-
ters composed each of one Cluster Head and three different
sensing nodes (Arduino Uno nodes) were used: two motion
detection nodes based on a PIR sensor (hc-sr501 sensor) and
one fire detection node based on temperature-humidity sensor
(DHT22 sensor) and gas sensor (MQ7 sensor). The set of
used devices locations is presented in Fig. 8. Motion detection
nodes were deployed in the school garden and fire detec-
tion nodes were deployed inside offices. The sensing nodes
communicate with their respective CH (Raspberry Pi 3 node)
using ZigBee protocol based on RF modules (ZB S2C Pro
modules) which support indoor communication with a range
up to 75-100 meters and an outdoor communication over
300 meters. The communication security is ensured by a 128-
bit AES encryption algorithm and a 4-byte message integrity
code (MIC). CHs aggregate sensing node data and forward
results to a gateway node (Raspberry Pi 3 node) located in
SERCOM Lab office in Tunisia.! CHs are equipped also with
cameras (Raspberry PI SMP cameras) to survey their cluster
zones. At the level of the gateway, a MySQL Database is
used to store collected data. The gateway node communicates
with a local server where three VMs with similar capabil-
ities (Mem: 4 GB, vCPU:1) are deployed and ready to be
used as fog nodes (FN1, FN2 and FN3) in addition to the
gateway node. The gateway is connected via Internet to a
cloud service platform (Amazon Web Services) > 3 where
three EC2 instances with different performance capabilities
described in Table 3 (CN1, CN2 and CN3) are deployed and
ready to be used as cloud nodes. Sources codes are available
at GitHub.*

C. APPLICATIONS USING READ-IoT FRAMEWORK

To validate the READ-IoT framework, three different appli-
cations were implemented and deployed: two event detection
applications and one anomaly detection application that are
described hereafter.

1http://www.ept.rnu.tn/laboratoires/sercom—
laboratoire-systemes—electroniques—-et-reseaux—-de—
communications/

2https://aws.amazon.com

3http://aws.amazon.com/es/ecZ

4https://github.com/aybsyah/READ—IoT
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FIGURE 7. READ-loT framework implementation.

o The first event detection application is a fire detec-
tion application. Three main components (RB-ED,
ML-ED and EDM) are used. RB-ED triggers the
ML-ED (OCSVM based classifier) based on tempera-
ture/humidity and gas sensors data. If the fire is con-
firmed by at least one component, EDM is executed to
send notifications to MQTT application subscribers via
the MQTT Broker.

The second event detection application is an unautho-
rized person detection and response application. The
RB-ED uses motion sensor data to detect intruders.
When a motion is detected by RB-ED, the camera at
CH node takes a picture of the surveyed zone and the
ML-ED (Deep Learning object detection classifier) is
triggered to analyze the picture, classify detected objects
in the picture and confirm if the motion is caused by a
real intruder (person) or a false alert generated by the
motion sensor. If an intruder is detected, EDM sends
notifications to MQTT application subscribers.

The anomaly detection application is based on three
components (RB-AD, ML-AD and ADM). RB-AD uses
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predefined rules to detect network anomalies. ML-AD
used OCSVM for WSN anomaly detection and Deep
Learning for IoT intrusion detection. When the anomaly
is confirmed by at least one of two detectors, the ADM
sends notifications to update nodes reputation values and
blacklist malicious nodes if their reputation values is
below a predefined threshold.

In the following, each use case is presented and evaluated
separately. However, they may be run at the same time. As an
instance, Fig. 8 depicts a screenshot of cartography web
application designed to provide a global and real view of the
surveyed zone. Different attacks against nodes as well as a fire
event are detected and shown in this cartography in real-time.
The nodes under attacks are shown in red circles with low
reputation values, and event messages are shown over source
nodes (e.g. 'Fire Detected’).

VII. EXPERIMENTAL EVALUATION
This Section presents the system setup, evaluation metrics,
placement calculation, EDS and ADS evaluation.
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FIGURE 8. Real loT network deployed in polytechnic school.

A. SYSTEM SETUP

READ-IoT system needs two phases: a bootstrap phase and
run-time adaptation phase. In the bootstrap phase, the ini-
tial policies settings, configurations (thresholds, applications
be provisioned), and resources are set by the administrator.
Then, the system enters a run-time adaptation phase where
any changes should be considered and treated to re-calculate
the best deployment plan in real-time ensuring a high detec-
tion accuracy and low end-to-end delay.

B. EVALUATION METRICS

To assess the efficiency of our proposed system, certain
parameters are changed in the run-time adaptation phase,
and READ-IoT is monitored how it handles these changes
dynamically and efficiently. The deployer should be able to
update the placement plan following a change in the Inter-
net Speed (communication bandwidth), nodes availability,
data size and nodes reputations. For provisioning, READ-
IoT should use the last updated placement plan ensuring
both low end to end detection and response delay and high
detection accuracy. The detection accuracy is calculated in
the following equation:

TP + TN

Accuracy = 4
FP+FN +TP+ TN

o True Positives (TP): number of attack instances correctly
classified as attacks.

o True Negatives (TN): number of normal instances cor-
rectly classified as normal.

o False Positives (FP): number of normal instances classi-
fied as attacks.

« False Negatives (FN): number of attack instances clas-
sified as normal.

To evaluate the impact of the communication link band-
width, two different Internet speed variations were used
(low: less than 512 Kbps and high: greater than 2 Mbps).
Table 4 provides a summary of the used evaluation met-
rics (metric, related domain, description and equation). For
instance, for the hybrid fog cloud provisioning, the metric
"End to End delay’ was used. This metric is calculated based
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TABLE 4. Evaluation metrics.

Domains: 1-Hybrid fog cloud provisioning, 2-Event and anomaly detection systems,
3-Trust and reputation systems

Metrics/domain Description Formulas
Communication Latency in communication with a de- | LeN;
latency/(1) ployment node Ni (seconds)
Processing latency/(1) Latency in processing a component C; | LpC; N;
over the deployment node N; (seconds)
Delay in seconds taken after executing | Equation 3
all applications components and sending
notification to end user (seconds)

End to End delay/(1)

Accuracy/(2) The ratio of number of correct predic- | Equation 4
tions to the total number of input samples
(percentage)

Reputation/(3) The reputation value of nodes based on | Equation 1

successful and unsuccessful past actions
(percentage)

on two other metrics (communication and processing laten-
cies). Equation 3 was used to calculate this metric.

C. REAL-TIME PLACEMENT PLAN CALCULATION AND
UPDATE

Fig. 9 depicts the real-time placement calculation and update
following QoS data reception. To test the efficiency of the
process, a low Internet speed, one fog node (FN1) and three
cloud nodes (CN1, CN2 and CN3) as resources, three compo-
nents (a rule based component C1, a machine learning based
component C2 and a rule based decision making component
C3) to be hosted in the fog/cloud environment were used. Fog
nodes FN2 and FN3 were not started in purpose to minimize
memory usage at the local machine. The deployer picks the
only available fog resource FN1 to host C1. It chooses CN3,
the best cloud VM instance in performance capability to
host C2 and CN2 (second in performance capability in cloud
nodes) to host C3. Few seconds later, CN3 is shutdown,
the QoS manager that checks continuously the availability of
all resources detects that quickly within a delay of few sec-
onds and sends the information to the controller to update
the available resource list. Then, CN3 is deleted from the
placement plan and replaced by the next cloud node (CN2)
to host component C2 that is a machine learning component.
CN1 which was not used for placement previously joins the
deployment nodes to host the third component C3 instead
of CN2 that was assigned C2. When CN3 is up again, QoS
manager notifies the controller and a new placement plan is
calculated in which CN1 (least in performance capability in
cloud nodes) is deleted and replaced by CN3 (best in perfor-
mance capability) to host the machine learning component
C2. CN2 which was assigned C2 previously takes charge of
C3 instead.

D. EDS EVALUATION
READ-IoT was executed and evaluated with the fire detection
and the unauthorized person detection applications that have
three components: C1:RB-ED, C2:ML-ED and C3:EDM.
These components are executed orderly over a set of deploy-
ment nodes in fog and cloud.

For the fire detection application, a fire is set up as shown
in Fig. 10. Table 5 depicts the end to end delay following
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Available Resources: ['FN1', "CN1', "CN2Z*, 'CN3']

CN3Down Flacement Plan: C1 on FN1 , €2 on CN3 , C3 on CN2

Available Resources: ['FN1', "CN1', "CN2']
Placement Plan: C1 on FN1 , C2 on CN2 , C3 on CN1

Available Resources: ['FN1', *CN1', "CN2"]
Placement Plan: €1 on FN1 , €2 on (N2 , C3 on CN1

Available Resources: ['FN1', °CN1', "CN2']

CN3 Up Placement Plan: €1 on FN1 , €2 on CN2 , C3 on CN1

==

Available Resources: ['FN1', °"CN1', "CN2', 'CN3']
Placement Plan: C1 on FM1 , C2 on CN3 , C2 on CNZ2

FIGURE 9. Real-time placement plan update following QoS data
reception.

different deployment scenarios: fully fog deployment, fully
cloud deployment and a hybrid fog/cloud deployment. With
a low Internet speed, the best choice was to deploy all
components in the fully fog environment to avoid the com-
munication delay. In contrast, with a high Internet speed,
the ultimate choice was to run all components in cloud.
Furthermore, the deployment of the three components in a
hybrid environment gives an average result and a compro-
mise between the two previous scenarios since the commu-
nication task is avoided for some components deployed in
fog. Besides, Fig. 12 demonstrates the effect of machine
performance capability on the end to end delay minimization
by varying its capability and the file size used for training
and prediction by the machine learning components. These
components are considered heavier than rule based ones and
time consuming in execution especially in the training phase.
Results showed that the file size affects also the latency.
With small data files sent, cloud computing was the ultimate
solution. But, when the file size sent increases, fog computing
gives better result despite the use of the best AWS machine
in performance capability (CN3). The previous deployment
experiments shows the importance of one parameter related
to communication bandwidth which is the Internet speed
for end to end delay minimization. Therefore, READ-IoT
which checks and updates regularly the communication link
bandwidth and considers this parameter in calculating the
best placement plan gives the best result (least end to end
delay).

For the surveillance application which is an unauthorized
person detection and response application. Detection test
of persons crossing the zone where motion detectors are
installed is shown in Fig. 11. The challenge was to deploy
the Deep Learning component (ML-ED) which is a heavy
and time consuming component in execution especially in
training phase. Table 6 compares different deployment sce-
narios with a high Internet speed. The minimum delay was
obtained by deploying all components in cloud and running
the Deep Learning component over the best machine in per-
formance CN3 (fully cloud scenario3). With a hybrid deploy-
ment scenario, the longest end to end delay was obtained
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FIGURE 10. Fire detection prototype.

FIGURE 11. Unauthorized person detection prototype.

TABLE 5. Fire detection application: end-to-end delay using different
placement scenarios.

Deployment RB- | ML-| EDMHigh Low
ED |ED Speed Speed

Internet | Internet

Static (fully fog) FN1|FN2|FN3|10.44 s 1044 s

Static (fully cloud) |CN1|CN2|CN3|6.86 s 25.03 s

Static (hybrid) CNI1|FN2|FN3|09.75s |21.71s

Static (hybrid) FN2|CN2|CN3|08.01s [24.31s

Dynamic (READ-|CN2|CN3|CN1|6.34s -

IoT)

Dynamic (READ- |FN1|FN2|FN3]|- 1044 s

IoT)

when running the Deep Learning component over the fog
node FN1 (hybrid scenariol). READ-IoT considers deploy-
ing heavy components over the best machine in performance.
Therefore, it gives the best result (least end to end delay).

E. ADS EVALUATION

READ-IoT is executed and evaluated with an anomaly detec-
tion application that has three components : C1:RB-AD,
C2:ML-AD (DL for IoT anomaly detection and OCSVM for
WSN anomaly detection) and C3:ADM with two different
datasets.

1) DATASETS AND MACHINE LEARNING ALGORITHMS
The anomaly detector detects two families of IoT anomalies.
For the WSN part (Sensing Nodes, CHs and gateways), most
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TABLE 6. End-to-end delay measurement using different placement
scenarios.

Deployment Scenario |RB- |ML- |EDM |[End to End
ED |ED delay

Static (fully cloud sce- |[CN1 |CN2 |CN3 |22.86s

nariol)

Static (fully cloud sce- |[CN2 |CN1 |CN3 |21.29s

nario2)

Static (fully cloud sce- | CN2 |CN3 |CN1 |20.87s

nario3)

Static (hybrid |CN1 |FN1 |CN2 |67.87s

scenariol)

Static (hybrid |[FN1 |CN3 |CN2 |45.13s

scenario2)

Static (hybrid |CN1 |CN3 |FN1 |34.24s

scenario3)

Dynamic (READ-IoT) [CN2 |CN3 |CNI1 [20.87s

@ Low Speed Internet [ High Speed internet

Lateney (s]

Deplayment

(a) Communication link bandwidth
Latency (s) d

Fog (VM)
—+— Cloud-t2-large
—— Cloud-t2-2xlarge

100

File size (Mo)
(b) File size and machine performance

FIGURE 12. End to End delay varying the link bandwidth and the data file
size.

known anomalies are attacks as selective forwarding attacks,
black hole attacks, and hello flooding. Data generated from
Castalia 3.2 simulator for WSN environment simulation were
injected to the network. The simulation was related to the
deployment of 15 nodes in a field size of 100 x 100 m2 [53].
The simulation time was 1000s. Normal data was collected
when the network is running without attacks. Then, a selec-
tive forwarding attack was simulated, and attack data were
collected. The selected OCSVM features (packet rate, con-
sumed energy) are standardized and normalized by subtract-
ing the mean and dividing by the standard deviation for each
feature. Cross validation technique was used to select the best
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TABLE 7. Intrusion activities.

Intrusion | Description

type

dos attacks on availability of services

probe monitoring or probing in order to obtain host
information

u2r unauthorized access to privileged useras ac-
count

21 unauthorized remote access

values of (gamma, nu) parameters for OCSVM technique
with an allowable false alarm rate set in the validation and
test phase.

When it comes to the network entities such as gateways,
servers, virtual machines, the IP protocol is used for com-
munication. Therefore, all kinds of IP attacks are considered
as anomalies that target the network. For this reason, NSL-
KDD [67]-[70] data were used in exchanged packets to
simulate different types of IP attacks. Other datasets may be
considered, but the objective of the performed evaluation is to
demonstrate the feasibility and the reliability of the proposed
approach in detecting these attacks and may be used to detect
other types of IP attacks if we provide other datasets and
consider training and generating new models. The dataset
contains data packets relative to four types of intrusions
mainly Probing, Remote to User (R2L), Denial of Service
(DoS) and User-to-Root (U2R) as described in Table 7 in
addition to normal traffic packets are injected. The same
neural network architecture in [54] was used with 3 hidden
layers containing 10, 50 and 10 neural nodes in order to
identify records as normal or malicious. ReLU served as the
activation function for the hidden layers whereas softmax was
employed at the output layer.

2) OBSERVATIONS

The existence of two malicious nodes FN2 and CN3 was
simulated by assigning most malicious packets to these nodes
and normal packets to remaining nodes FN1, FN3, CN1 and
CN2. Table 8 shows the reputation values obtained after
running the anomaly detection application over the different
deployment nodes and varying the sample data size. The
two malicious nodes are detected by their low reputation
values with a high accuracy (over 98%) using the ML-AD
(based on Deep Learning technique) even with small sam-
ple data size. Therefore, READ-IoT automatically eliminates
these nodes from deployment resources to avoid the risk of
deploying components on risky nodes. For WSN anomaly
detection, a selective forwarding attack is simulated by hav-
ing two malicious nodes dropping 80% of received packets
(SN1 in cluster 1 and SN5 in cluster 2). Fig. 13 depicts
the source node reputation values. The two malicious nodes
are detected as suspicious nodes by their low reputation
values calculated using the RB-AD. The ML-AD based on
OCSVM confirms the attack with a high accuracy (over
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FIGURE 13. Sensing nodes reputation values.

Available Resources: ['FN1*', 'CN1‘', ‘CN2*', *CN3']
Placement Plan: C1 on FN1 , C2 on CN3 , C3 on CN2

Message from ADS:

Reputation values: FN1: ©.9937 ,FN2: ©.06839 ,FN3: 0.6667
CN1: ©.8333 ,CN2: ©.9697 (CN3: 0.0018

Available Resources: ['FN1', 'CN1*, "CN2*, "CN3']——

Placement Plan: C1 on FN1 , C2 on CN2 , C3 on CN1

Available Resources: ['FN1', 'CN1', 'CW2', "CN3']
Placement Plan: Cl on FN1 , C2 on CN2 , C3 on CN1

FIGURE 14. Real-time placement plan update following reputation values
reception.

0.91). Therefore, these nodes are considered as malicious
nodes and consequently blacklisted. Fig. 14 demonstrates the
placement plan update following reputation values reception
form ADS. When a message is received by the placement
calculator with reputation values, CN3 which was used previ-
ously for placement has a very low reputation value (0.0018).
Automatically, the deployer excludes it from the deployment
plan and replaces it by CN1 though it remains an available
resource for usage. Inversely, FN2 and FN3 are not available
as resources since they are not started. Fig. 15 shows the
execution time for training and prediction using OCSVM for
WSN anomaly detection and Deep Learning for IoT anomaly
detection. OCSVM showed similar plots for training and
prediction even-though training time is obviously higher than
prediction time. For Deep Learning the training phase was
very time consuming in contrast with a stable execution time
for prediction. Therefore, READ-IoT considers deploying
time consuming components in cloud as training machine
learning algorithms when the communication link bandwidth
is high.

F. RESULTS’ SUMMARY AND LEARNED LESSONS

This work has allowed us to show READ-IoT efficiency but
also to identify some limitations. The lessons learned can be
summarized in the following points:

o Classically, EDS and ADS are separate systems, and
even if they co-exist in a single system, they are
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FIGURE 15. Comparison of ML-AD execution time varying the sample size.

TABLE 8. Deployment nodes reputation values.

Sample |FN1 [FN2 |[FN3 |CN1 |CN2 |CN3 | Accuracy
size

100 0.958]0.0370.500( 0.666| 0.800] 0.019 0.989
200 0.963/0.020] 0.666| 0.500/ 0.916] 0.008 0.988
400 0.986/0.010] 0.666| 0.666| 0.900] 0.004, 0.986
600 0.989]0.005| 0.666| 0.750 0.954| 0.003| 0.984
800 0.993] 0.004{ 0.666| 0.800] 0.928| 0.002 0.990

1000 0.993] 0.003| 0.666| 0.875| 0.962/ 0.001| 0.988

TABLE 9. List of Abbreviations.

6LoWPAN IPv6 Low power Wireless Personal Area Net-
works

ADS Anomaly Detection System

CH Cluster Head

COAP Constrained Application Protocol

DL Deep Learning

EDS Event Detection System

GW Gateway

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

LoRaWAN Long Range Wide Area Network

MQTT Message Queuing Telemetry Transport

OCSVM One Class Support Vector Machines

RPL Routing Protocol for Low-Power and Lossy
Networks

SN Sensor Node

WSN Wireless Sensor Network

generally managed and processed with different tools
and technologies. READ-IoT implementation and eval-
uation show that integrating EDS and ADS can be
performed with a common management system and a
common workflow processing. This is very practical to
reduce the management cost. Also, the cascaded acti-
vation of rule-based and machine-learning processing is
interesting for a better identification of outliers in both
EDS and ADS.

o ADS is a way to provide a reliability feature to EDS.
But, it needs itself to be reliable to accomplish correctly
its mission. Reputation-aware placement is showed to be
an efficient technique to enforce the reliability of both
EDS and ADS.
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« Integrating both resource-aware and reputation-aware
deployment allows to find an interesting compromise
between reliability and real-time processing constraints.
The fog/cloud paradigm is the basis of such flexible
and hybrid deployment but a smart deployment plan
calculation is required to reach this goal.

« Reputation-based classification is the main technique
used in this work for reliability enforcement. Enhancing
the detection algorithms is also an efficient technique
towards reliability. Indeed, recent techniques about
reinforcement-learning machine learning algorithms can
adapt to system evolution and change [71], [72]. It can
be an interesting extension to our work to adapt such
algorithms and to test them on the fog and on the cloud.

o The current work makes an implicit assumption that
all IoT parts can be under a common management
control. Indeed, all data flow go through the con-
troller that makes decisions about reputation, QoS and
deployment plan. This assumption does not hold when
considering a distributed IoT under different manage-
ment domains. A collaboration between the domain
managers is required to achieve both reliability and real-
time processing.

VIIl. CONCLUSION AND PERSPECTIVES

This paper introduces a Reliable Event and Anomaly Detec-
tion Framework for the Internet of Things (READ-IoT for
short). The designed framework supports outliers manage-
ment in IoT. It handles events and anomalies thanks to a
common and integrated rule-based and machine learning-
based detection. The ultimate goal is to reduce operating cost,
management complexity and to enhance reliability.

READ-IoT is designed and provisioned over a hybrid
cloud/fog ecosystem to address the specific IoT applica-
tions requirements such as the overhead-effectiveness and
the latency sensitivity. The provisioning process covers the
whole IoT applications life-cycle (i.e. develop, deploy, and
manage). The resources provisioning relies on a reputation-
aware deployment that takes into account the vulnerability of
the deployment at the target cloud/fog hosts.

To validate these findings and to show the feasibility of
the proposed approach, READ-IoT was implemented and
evaluated using a real-life IoT applications such as fire detec-
tion and unauthorized human detection solutions. Several
scenarios of anomalies and events were conducted to experi-
ment the system efficiency of its reliability components. The
performed experiments validate the efficiency of READ-IoT
in terms of event detection accuracy and real-time processing.
It also shows that the overhead due to the integration of
cloud/fog domains is reasonable.

As for the next steps, we plan to re-architect the IoT
system management to hierarchical fashion. Indeed, in the
current work, all the considered resources are supervised
using the same rule-based and machine learning process
flows. Furthermore, the sensors are all connected to the same
publish/subscribe broker. A hierarchical management archi-
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tecture can be adopted to reuse the management layer of the
framework. The management layer centralizes all collected
data and metadata, builds the trust management layer and
defines the deployment plan. The challenge consists in con-
necting efficiently the management subsystems to the frame-
work management layer so that the communication latency
overhead is minimized and real-time processing is preserved.
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