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Abstract—With the development of the industrial Inter-
net of Things (IIoT), intelligent healthcare aims to build a
platform to monitor users’ health-related information based
on wearable devices remotely. The evolution of blockchain
and artificial intelligence technology also promotes the
progress of secure intelligent healthcare. However, since
the data are stored in the cloud server, it still faces
the risk of being attacked and privacy leakage. Note that
little attention has been paid to the security issue of privacy
information mixed in raw data collected from large number
of distributed and heterogeneous wearable healthcare de-
vices. To solve this problem, in this article, we design a
deep learning-based privacy preservation and data analyt-
ics system for IoT enabled healthcare. At the user end, we
collect raw data and separate the users’ privacy information
in the privacy-isolation zone. At the cloud end, we analyze
the health-related data without users’ privacy information
and construct a delicate security module based on the con-
volutional neural network. We also deploy and evaluate the
prototype system, where extensive experiments prove its
effectiveness and robustness.

Index Terms—Data analytics, deep learning, IoT-enabled
healthcare, privacy preservation.

I. INTRODUCTION

W ITH the industrial Internet of Things (IIoT) technology,
wearable devices can access users’ health-related

information, upload the information to the cloud for analysis,
and give feedback to users, which greatly promotes the
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development of intelligent healthcare [1]. According to a report,
the global Internet of Things (IoT) healthcare market is expected
to grow from USD 72.5 billion in 2020 to USD 188.2 billion
by 2025 [2]. However, with the collection of health-related
data, it is inevitable to collect users’ privacy-related behavior
information by wearable devices, which also faces the risk of
privacy leakage. For example, with wearing smart earphones
for healthcare during walking, the uploaded data will be mixed
with gait information closely related to the user’s identity [3].
Once the attackers obtain the data from the cloud, the attackers
can separate the gait information and the users’ privacy may be
leaked. It is worth thinking about analyzing the health-related
data while protecting users’ privacy in IoT-enabled healthcare.

With the development of blockchain and artificial intelligence
technology, more and more researchers tend to leverage these
emerging technologies to build a secure and robust IoT-enabled
healthcare platform. In [4], it realizes medical data analysis in a
secure way and privacy-assured medical data aggregation on the
fog server by improving symmetric homomorphic cryptosystem
and fog-based communication architecture. In [5], a scheme
using blockchain technology is proposed to solve the security
issue of the key management for flying ad-hoc network, which
can resist external and internal attacks effectively. Healthbank
blockchain [6] can also extract data from wearable devices and
store the data securely.

The general privacy protection technologies could ensure that
the data are transmitted in nonplaintext mode. However, they
are not completely free from loopholes. The attackers can use
these loopholes to crack encrypted information. For example, the
blockchain technology can be used to protect the access records
and logs on the chain from being tampered with. However,
network insiders can modify data by adding or deleting sensitive
information, which may lead to significant security and trust
problems [7]. Therefore, it is necessary to design a new way to
strengthen privacy protection. Even if the data stored in the cloud
platform or localization server are stolen, the attacker cannot
obtain the user’s privacy information from the data source level.
In order to enhance data security, we need to remove the privacy
information in the privacy isolation zone before uploading data
to the cloud [8], which can also be used as a supplement to
existing privacy protection works.

However, there are also some significant challenges that we
need to solve. Because privacy information and health-related
information are mixed, it is difficult for people to distinguish
them directly. Even if the privacy information can be separated,
the health-related data may be distorted and difficult to extract.
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The effective recognition of separated health-related data is also
a problem. In order to solve the abovementioned challenges,
we design a deep learning-based privacy preservation and data
analytics prototype system for IoT-enabled healthcare. The main
steps are as follows: at the user end, we design a privacy-isolation
zone to collect health-related data [8]. Specifically, since time
series data from wearable devices may be aliased with various
action information, we use the data analytics method to separate
the aliased privacy information. The health-related data without
users’ privacy information are uploaded to the cloud for further
analysis directly. At the cloud end, we implement the nonprivacy
data extraction algorithm to analyze health-related information.
Subsequently, the security module is built based on the extracted
data using the convolutional neural network (CNN). The ana-
lytical result can also be returned to the doctors or the users to
monitor the users’ health.

In this article, in order to describe our system more specifi-
cally, we construct a privacy-preserving scheme for the “office
workers” and the “phubbers.” As we know, if the head is in
an incorrect posture for a long time, people may have a series
of health problems due to insufficient blood supply. Therefore,
head gesture monitoring is of great significance in IoT health.
The emergence of “phubbers” and “office workers” increases
the health risks of the people. Given this, we research head
gesture recognition during resting and walking states. How-
ever, the health-related head gesture data will be mixed with
gait information in the walking state, which needs to separate.
Therefore, we build a secure prototype system to recognize the
head gestures for these subhealthy people. In our prototype
system, the raw data are collected from off-the-shelf smart
earphones. As private and pervasive wearable devices, more
and more smart earphones are integrated with accelerometers,
such as AirPods, which are low-cost and universal. It can detect
health-related head gestures to prevent neck pain caused by
long-term head immobility whether the user is in walking or
resting state. Our system can also be extended to other wearable
devices, which can realize secure and user-friendly IoT-enabled
healthcare.

A. Contribution

With the system designing, the main contributions are de-
scribed as follows.

1) We propose a prototype system with privacy preservation
and data analytics based on deep learning, which can
analyze health-related data while protecting the users’
privacy.

2) We implement the nonprivacy data extraction algorithm
to analyze health-related data after privacy information
separation.

3) We use the data augmentation method to avoid overfitting.
A customized CNN is used to construct a security module.
We implement and evaluate our proposed system with
smart earphones on a collected dataset from 20 partici-
pants. Different scenarios are also considered to verify
the effectiveness and robustness of the system.

B. Organization of the Article

The rest of the article is organized as follows. We first intro-
duce our related work in Section II. In Section III, we present
the system overview. Then, we implement the nonprivacy data
extraction algorithm and build the security module. Experimen-
tal results are given in Section IV. Finally, Section V concludes
this article.

II. RELATED WORK

Given the popularity of wearable devices in pervasive and
personalized healthcare, there are some IoT-enabled healthcare
works. In [1], a wearable feedback system, which can help ther-
apists monitor swimmers’ physical recovery and injury preven-
tion. In [9], a smart indoor anticollision system based on radio
frequency identification (RFID) is proposed to help visually im-
paired people guide from obstacles. In [10], a real-time biomon-
itoring method has been proposed to monitor facial surface
electromyography, reflecting the pain intensity of patients. The
wearable data with the biosensor mask can be uploaded to the
cloud server for analysis to realize the medical care of patients.
In [11], a home care system based on a wearable accelerometer
is proposed to measure the respiration rate and daily volume
variability, where the measured data can be stored in the cloud
and timely feedback to patients can be provided. The data in-
volved in health-related information is susceptible, and security
solutions are also proposed in some works. In [12], the Bayesian
network algorithm is applied to human sensor networks to detect
and eliminate fault sensor data and prevent medical diagnosis
errors. In [13], Bodyedge, an edge-based architecture consisting
of a tiny mobile client module and performing edge gateway, is
proposed to support healthcare applications, which can ensure
flexibility, robustness, and adaptive service level on the private
cloud and public cloud platforms. In [14], a cloud-based user
authentication scheme is proposed, which can realize secure
communication with a secret session key. In [15], a privacy
protection method based on RFID is proposed to protect the
consistency and synchronization of authentication information
in the medical environment. In [16], a lightweight data integrity
verification technology based on an edge server is proposed to
verify the integrity of patients’ health data stored in the cloud
and prevent disease misdiagnosis. In [17], a reliable scheme
to distinguish patients from noisy ECG signals is proposed to
provide differential privacy protection. In [18], a large-scale
privacy protection scheme based on blockchain technology is
proposed to protect the privacy of data stored in the hospital
database or cloud.

However, the data mixed with privacy information are stored
in the cloud server, which is still the possibility of being attacked.
Therefore, it is necessary to propose the privacy-preserving IoT-
enabled heathcare system to ensure data security further.

III. PROPOSED PROTOTYPE SYSTEM

In this section, we first described the overview of the system
architecture. Then, a privacy-isolation zone was designed to
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Fig. 1. Flowchart of the system architecture. (The user end determines whether the user is in walking or resting state and removes the gait
information during walking. The nonprivacy data extraction and security module can be realized at the cloud end.).

detect and separate gait signal from the acceleration stream at
the user end. Finally, the nonprivacy data extraction and security
module were implemented at the cloud end, which analyzed
users’ head gestures both in the resting state and in the walking
state.

A. Overview of System Architecture

We design the system for IoT-enabled healthcare with built-in
accelerometers in the smart earphones. The sampling frequency
of acceleration is 100 Hz. The X-axis is parallel to the side
of the face and perpendicular to the ear handle. The Y-axis is
the opposite of the direction of the smart earphone handle. The
Z-axis is perpendicular to the plane where the X- and Y-axes lie.
At the user end, we open a privacy-isolation zone to receive data
from smart earphones and separate privacy information, such
as gait information. At the cloud end, we deploy algorithms
to realize the nonprivacy data extraction and security module
construction, which can reduce the burden at the user end [8].
Fig. 1 illustrates the flow of our system architecture, which
mainly consists of the following processes.

1) We distinguish between walking and resting and separate
gait information from collected data during walking in
the privacy-isolation zone. First, we leverage a high-pass
filter to eliminate the influence of gravity on raw data.
Then, the root mean square (rms) value of the signal is
calculated to determine the user’s state. If the user is in
the walking state, we remove the gait information through
low-pass filtering of the raw data. The filtered data without
user’s privacy information are uploaded to the cloud end.
If the user is in the resting state, the raw data are sent to
the cloud together with the high-pass filtered data.

2) We also propose a nonprivacy data extraction algorithm
for health-related head gesture detection. If the user is
in the resting state, we utilize a subwindow merging
algorithm to detect head gestures directly. If the user
is in the walking state, we determine the head gesture
boundary through a series of processes, including compo-
nent extraction by principal component analysis (PCA),
drift removing, envelope calculation, component selec-
tion, subwindow merging, etc.

3) We expand the samples through the data augmentation to
avoid overfitting. The CNN is used to build the security
module, which will be used for head gesture recognition.

Our goal is to design a system for privacy preservation and
data analytics in IoT-enabled healthcare. The system can achieve
the following design goals.

1) Privacy Protection: By separating the users’ privacy in-
formation in the privacy-isolated zone at the user end, the
security of data transmission and storage at the cloud end
can be further guaranteed.

2) Passive Sensing: We can develop a monitoring system for
the users’ health without impairing the users’ adherence.

3) Reliable Analysis: Our system can ensure that the health-
related data without privacy information can be obtained
and analyzed.

B. Design of Privacy-Isolation Zone

As abovementioned, while collecting the user’s health-related
head gesture data by wearable devices during walking, the data
are inevitably mixed with the gait information associated with
the user’s identity. Once the data in the cloud are stolen, the
attacker may separate the gait information from the aliased data,
which will cause the user’s privacy disclosure. Therefore, we
need to segment the data for analyzing the user’s state in the
privacy-isolation zone before uploading the data to the cloud.

The window function, a smooth function that goes to zero at
the border, makes the signal outside the boundary approximate
to zero and retains the signal within the boundary by multiplying
with the collected signal. We can extract the signal within the
boundary based on a fixed threshold. However, the collected
data include not only the gait information but also the gravity
information. The gravity is a downward force with a fixed value
of 9.8 m/s2. As shown in Fig. 2(a), the projection of gravity
on each axis will change with the head movement, which is
hard to find a fixed threshold. In addition, the interference of
gait on the head gestures also causes a low signal-to-noise ratio
(SNR), which makes it difficult to distinguish between noise and
head gestures. Moreover, they are aliased in the time domain.
Therefore, we cannot separate the aliased signals directly with
the window function.
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Fig. 2. Raw acceleration signal and linear acceleration signal by high-
pass filtering of left smart earphone.

Fortunately, different behavior information shows different
frequency characteristics. In order to separate the data, we
analyze the signals in the frequency domain through Fourier
transform. The gravity is a direct-current component in the
frequency domain. The frequency of the gait ranges from 1.4 to
2.1 Hz, which are all at the high-frequency band relative to the
gravity [19]. Therefore, we use a high-pass filter to filter out
the gravity information and a low-pass filter to filter out the gait
information. The filters that can realize high-pass or low-pass
filtering include Butterworth, Chebyshev, Elliptic, and Wavelet
filters [20].

The Wavelet filter has a complicated wavelet decomposition
process, which is unsuitable for deployment on the user ter-
minal with limited resources. Butterworth filter has the flattest
passband frequency response curve and relatively slow stopband
attenuation, which has a more stable amplitude frequency char-
acteristic than the Chebyshev filter and Elliptic filter. We also
use the SNR to analyze filtered neck extension (NE) signals.
The average SNRs of signals using Butterworth, Chebyshev, and
Elliptic are 11.99, 11.50, and 11.88, respectively. The higher the
SNR is, the more effective the head gesture can be extracted.
Therefore, we separate mixed signals using the Butterworth
filter.

As shown in Fig. 2(b), after eliminating the gravity informa-
tion, we can use a window function to analyze the user’s state
by calculating the rms of noise signal within the window width
of 1 s.

rmsI =
∑
i∈I

√
LX2

i + LY 2
i + LZ2

i +RX2
i +RY 2

i +RZ2
i

6

where LX , LY , LZ are the three axes acceleration in left
earphone, and the RX , RY , RZ are the three axes acceleration
in right earphone. We also calculate the average rms from the
collected data. The average rms of noise in the walking state is
greater than 4, whereas the average rms of noise in the resting
state is less than 0.4. Therefore, we can set a threshold to
distinguish between walking and resting.

Since the gait frequency is at high-frequency band relative
to the gravity frequency, we use a high-pass filter to remove
the gravity information and a low-pass filter to separate the gait
information. If the user is in the walking state, the filtered signal

is directly uploaded to the cloud for analysis. If the user is in the
resting state, the raw data are sent to the cloud together with the
filtered data. All the Butterworth filters use a cut-off frequency
of 0.45 Hz.

C. Nonprivacy Data Extraction

After eliminating the privacy information in the privacy-
isolated zone, we can extract the health-related head gestures
at the cloud end. There are 12 kinds of head gestures, includ-
ing NEand recovery (RNE), neck flexion (NF) and recovery
(RNF), neck left inclination (LI) and recovery (RLI), neck right
inclination (RI) and recovery (RRI), neck left rotation (LR)
and recovery (RLR), and neck right rotation (RR) and recovery
(RRR). Because the gravity direction is vertically downward, the
angle between gravity and acceleration will change with head
movement. However, for the head gestures LR, RLR, RR, and
RRR, gravity has little effect on the acceleration signal, and the
gait plays a major role during walking. The change of angle is
also very small. The separation of gait will also lead to signal
distortion. It is difficult to detect the LR, RLR, RR, and RRR
during walking. To solve this problem, we design a nonprivacy
data extraction algorithm during walking. The flow of algorithm
is shown in Fig. 3.

Compenent Extraction: The different head gestures have dif-
ferent degrees of influence on each axis of acceleration. Es-
pecially for the head gestures LR, RLR, RR, and RRR, they
are difficult to extract because of low SNR. In order to select
the component, most affected by the head gesture, we map
the filtered data into mutually independent components in the
walking state by PCA [21], [22]. Before PCA, we need to
normalize the data, which can make the data comparable among
axes and avoid the information loss due to amplitude difference

D = [LX ′, LY ′, LZ ′, RX ′, RY ′, RZ ′]

D∗ =
D − min(D)

max(D)− min(D)

where LX ′, LY ′, LZ ′, RX ′, RY ′, and RZ ′ represent the six
axes filtered data; D is a matrix of these six column vectors; D∗

is a normalized matrix of D with a dimension of Len × 6, where
Len represents the number of sample points. We calculate the
correlation coefficient matrix C of D∗ according to the formula
C = D∗ × (D∗)T . We solve the eigenvectors of the C and put
them into a matrix R by row. Each PCA component can be
obtained by the formula Y = P ×D. In Y , each row represents
the projection of the raw data on each component.

Drift Removing: The signal drift caused by the internal noise
of sensors and the occurrence of some outliers will increase the
signal variance. When the signal is projected to the orthogonal
direction with the largest variance through PCA, the variance
can be amplified and more significant drift appears [23]. We can
remove drift of each component through the linear regression
fitting method [24], [25]. First, the trend term of each compo-
nent can be calculated by minimizing the square sum of errors
between the fitted component and original component. Then,
we subtract the trend term from the component and focus the
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Fig. 3. Flowchart of the nonprivacy data extraction algorithm during walking. (We take the LR and RLR as examples. The Comp1, Comp2, Comp3,
Comp4, Comp5, and Comp6 are six components by PCA, respectively.).

analysis on the fluctuation of the data itself.

Y ′
k = Yk − fk, k ∈ {1, 2, . . ., N} (1)

where Y ′
k is the component after drift removing, fk is trend term

of the component Yk, and N is the total number of components.
Envelope Calculation: Because the plane of the head rotation

is hard to be strictly perpendicular to the direction of gravity,
there will be also a signal fluctuate. Gravity still plays a small,
albeit small, role in the signal. Compared with random noise,
the head gesture signal has a larger fluctuate. We can distinguish
them from random noise by amplifying the fluctuate difference
by slope calculation

yk = |ΔY ′
k(t) = Y ′

k(t)− Y ′
k(t− 1)| (2)

where yk is the absolute value of slope of the solved component
signal Y ′

k in (1).
Even so, the random noise will lead to a larger slope and easily

be mistakenly detected as the head gesture. To detect the head
gesture signal more efficiently, we extract the envelope Ak of
the slope signal yk by Hilbert transform, which can suppress
the influence of larger slope caused by partial noise and further
smoothen the head gesture signal [26]

Ak(t) =
√
y2
k(t) +H2

k(t), k ∈ {1, 2, . . ., N} (3)

where Hk is the value by Hilbert transform of the slope signal
yk in (2), and N is the total number of components.

Component Selection: The component with a higher SNR
can help us to extract the head gesture signal more effectively.
Therefore, we select the component with the maximum SNR
for analysis. However, the SNRs of different components with
the same head gesture are different from each other. The SNRs
of different head gestures on the same component are also
different. We cannot directly determine an optimal component
to extract head gesture signals. Therefore, we implement an
adaptive component selection method using the (4) to find the

optimal component for head gesture extraction.

SNRk =
A2

k

A2
noise

, k ∈ {1, 2, . . ., N}

k̂ = arg max
k∈{1,2,...,N}

SNRk (4)

where SNRk is the SNR of the envelope Ak in (3), k̂ is the
component number of the envelope with the maximum SNR, and
N is the total number of components. Finally, we leverage the
subwindow merging algorithm to segment the selected envelope
signal.

Subwindow Merging: The traditional fixed sliding window
algorithm usually faces a fixed window width problem. If the
window’s width sets unreasonable, it is easy to cut off the signal
or contain multiple redundant signals. In order to cover the whole
head gesture signal, we utilize small-sized subwindows for
continuous detection and merge them into a parent window [27].
With this subwindow merging algorithm, we can adaptively
extract signals with different widths in time domain, which is
beneficial to retain the complete head gesture information. If
the rms is greater than that of random noise, the subwindow
will be retained. Otherwise, we proceed to the next head gesture
analysis. Considering that the 50% overlap rate of subwindow,
only the first N

2 sampling points of each subwindow I are
retained

E = E
⋃{

P I
1 , P

I
2 , . . ., P

I
N
2

}

where E is the detected signal in the merged window. After
determining the boundary of event signal during walking, we
input the low-pass filtered six axes acceleration data within the
boundary to the security module for classification. In particular,
we can directly use the subwindow merging algorithm to deter-
mine the boundary based on the high-pass filtered data in the
resting state.

D. CNN-Based Security Module

Data Augmentation: Limited by the time and cost, it is impos-
sible to collect all sample data. We can use the data augmentation
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TABLE I
NETWORK STRUCTURE OF SECURITY MODULE

method to generate more training samples for improving the
generalization of the module as follows [28].

1) Time warping processing, which transforms the time-
domain position of the signal, represents data collection
with different speeds.

2) Amplitude distortion processing, which changes the am-
plitude of the data randomly, represents data collection
with different forces.

3) Time scaling, which changes the signal width, represents
data collection with different amplitudes.

4) Permutation, which changes the time position of the
signal in the window, represents data collection with
different segments.

5) Rotation processing represents data collection by wearing
smart earphones at different angles.

6) Adding random noise to the data represents data collec-
tion with different noise environments.

Network Structure: The existing common neural networks
include long short-term memory (LSTM), deep neural network
(DNN), CNN, etc. The LSTM is suitable for the samples with
precedence and dependency relationships. The order of input
will affect the output of LSTM. The DNN has a large training
cost due to too many parameters. The CNN has a parameter
sharing mechanism, which can reduce the number of parameters
for training. Each adjacent point in the extracted signal has a
significant correlation, which is also suitable for convolution
processing of CNN. Moreover, the predicted samples have no
sequence relationships between the past and future, which are
not suitable for the LSTM. Therefore, we use CNN to build our
security module [29].

Because the lengths of acceleration data extracted by the vari-
able window function are different and most people complete
the head gestures within 6 s, we regularize the input data into
1 × 600 1-D format by the ways of truncating and filling zero at
the end (with the frequency of 100 Hz). The label of each class is
encoded in one hot mode. And we use the z-score standardization
method to preprocess the 1-D data, which can eliminate the
influence of data unit.

As shown in Table I, the network structure includes four
1-D convolutional layers, four 1-D pooling layers, one fully
connected layer, and a softmax layer [30], [31]. Each convolution
layer has 800 convolution kernels, which are used for feature
extraction. For the first convolution layer, we input the six axes
time series data with a length of 1 × 600. The input and output

of each layer are shown in Table I. The size of each convolution
kernel is 1 × 4. The moving step size of each convolution kernel
is 1 × 1. The output of the convolution kernel is processed by
the activation function Relu to improve the expressiveness of the
model. Then, the feature dimensionality reduction is performed
by extracting the maximum value in 1 × 4 moving window. The
moving step size is set to 1 × 4 except the last layer that is set to
1 × 2. After flattening the output data of the last convolution
layer, the predicted probability of each class can be solved
through the fully connected layer and the softmax layer. Based
on the predicted category and the true category, we calculate the
rms error (RMSE) and propagate it back to the network. The
Adam gradient descent method is used to update the network
parameters with the learning rate of 0.0001.

IV. EXPERIMENTAL RESULTS

We implemented the nonprivacy data extraction algorithms
and then built a security module using CNN. In this section,
we conducted different experiments to evaluate and verify the
effectiveness and robustness of our system.

A. Experimental Settings

In the experiment, we recruit 20 participants (five females)
from 20 to 30 years old. All the participants are healthy students.
Each participant performs the 12 kinds of head gestures in resting
and walking states respectively. Each head gesture is repeated 20
times. Participants comfortably perform head gestures with an
interval of 10 s. To collect data in the resting state, we randomly
select ten participants to sit in front of the computer to browse the
website, and the rest participants need to keep standing posture.
The data collection during walking is carried out on a treadmill
with a speed of 4 km/h and a slope of 0◦. Besides, each participant
collects walking data of 6 s, 20 times as a new category W. The
video recordings are also provided by the camera. The ELAN
software is used to label each head gesture. Finally, we have
collected a total of 10 000 samples (20 × 20 × 12 + 20 × 20
× 13). Among them, 80% of the samples are used for training,
and the others are for testing. For the training set, we use tenfold
cross validation as the verification method.

B. Evaluation Metrics

To evaluate the recognition performance, we use accuracy,
precision, recall, F-score, and confusion probability matrix as the
evaluation metrics, where the true negative (TN), true positive
(TP), false negative (FN), and false positive (FP) are basic
metrics [32], [33].

1) Accuracy is the ratio of the true positive sam-
ples to the total number of samples, defined as
Accuracy= TP+TN

TP+TN+FT+FN .
2) Precision is the ratio of true positive samples to predicted

positive samples, defined as Precision = TP
TP+FP .

3) Recall is the ratio of true positive samples to all positive
samples, defined as Recall = TP

TP+FN .
4) F-score is a harmonic mean of precision and recall, de-

fined as 2
F−score = 1

Precision + 1
Recall .
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Fig. 4. Accuracy comparison under different kernel size and layer
number.

Fig. 5. Performance of component selection.

5) The confusion probability matrix is used to analyze the re-
lationship between the predicted results and actual results.
Each row of the confusion matrix corresponds to the true
label; each column of the confusion matrix corresponds
to the predicted label.

C. Parameter Selection

The more layers the CNN has, the stronger the learning ability
of the model has. However, too many layers will easily lead to
overfitting of the model. If the size of the convolution kernel is
too small, it will not be able to obtain complete signal charac-
teristics; otherwise, it will introduce too much noise. To select
suitable model parameters, we analyze the impact of different
kernel sizes (2, 4, 8, and 16) and layer numbers (4, 6, 8, and 10)
on the recognition performance by grid search method to find
the best parameter combination [34]. As shown in Fig. 4, the
model has the accuracy of 93% with the kernel size of 4 and the
layer number of 8, which is the best performance.

D. Effectiveness Evaluation

Performance of Component Selection: The effective compo-
nent selection is the premise of signal segmentation. In order
to prove that we can determine the signal boundary based on
the components of PCA, we analyze the ratio of head ges-
tures with the effective determining components and all head
gestures (the higher the ratio, the better the performance). The
head gestures and corresponding recovery gestures are collected
together. Their signal detection can be carried out on the same
component and analyzed together. As shown in Fig. 5, because
head gestures LR and RR have more serious distortion after
filtering the gait signal, the performance of head gestures LR
and RR are slightly lower than those of other kinds of head

Fig. 6. False positive rates and false negative rates of the nonprivacy
data extraction algorithm.

Fig. 7. Confusion probability matrix of 12 kinds of head gestures.

gestures. Even so, the ratios of all kinds of head gestures that
can select effective components exceed 97%. Therefore, we can
segment the signal based on the components of PCA.

Performance of Nonprivacy Data Extraction: The nonprivacy
data extraction will directly affect the performance of the model.
We evaluate the performance of nonprivacy data extraction with
the false positive rate and the false negative rate. When there is
no head gesture happening, but the signal is detected, we define it
as a false positive. When the head gesture happens, but no signal
is detected, we define it as a false negative. As shown in Fig. 6,
the experimental results show that the average false positive and
false negative rates of nonprivacy data extraction in the resting
state are 3.71% and 3.08%, respectively. The average false
positive and false negative rates of nonprivacy data extraction
in the walking state are 7.59% and 6.46%, respectively. We can
see that the false positive and false negative rates in the walking
state are higher than those in the resting state. This is because
the walking has a more significant interference on head gesture
detection. The average false positive and false negative rates of
head gestures LR, RLR, RR, and RRR are higher than those of
the other eight kinds of head gestures. To further reduce false
positives, we take walking as a category.

Confusion Probability Matrix: We analyze the accuracy of
misclassification using confusion probability matrix. As shown
in Fig. 7, the error rates between head gestures RR and RRR
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Fig. 8. Robustness evaluation (%F and %SR mean the proportion of female and senior man in sample, respectively).

are 6.9% and 3.5%, respectively. The error rates between head
gestures LR and RLR are 6.6% and 6.7%, respectively. These
error rates are relatively high because they are similar with each
other. Nevertheless, the average recognition accuracy of model
exceeds 93%. At the same time, the recognition accuracy of
walking (W) is 93.2%, which can help us further reduce the
impact of false positive rate.

E. Robustness Evaluation

In this section, in order to prove the robustness of the model,
we evaluate the effects of different factors on performance of
security module, including ground slope, classifier, data aug-
mentation, gait separation, data sample,training set size, etc.

Impact of Ground Slope: In order to evaluate the performance
in different ground slopes during walking, we set the treadmill
to three kinds of slopes, including uphill slope of 4◦, downhill
slope of −4◦, and flat ground of 0◦. For both uphill and downhill
scenarios, all participants do each kind of head gesture 10×.
With the 80–20 split rule, 80% samples of both uphill and
downhill are used to build the model, and the rest samples are
used to test the model. As shown in Fig. 8(a), the precision,
recall, and F-score of the model with slope are 91.7%, 91.8%,
and 92%, respectively, which is slightly lower than that of the
model during walking on the flat ground. When the user walks on
a larger slope, her/his body shakes more violently. It makes the
event more difficult to detect. Nevertheless, the slope has little
effect on the performance, showing that the model has good
robustness to the ground slope.

Impact of Training Set Size: In order to ensure effectiveness in
the new environment, the model needs to be updated in time. The
more training samples we collect, the better the generalization
the model has. However, too frequent data collection will bring
participants a bad experience. To find a suitable data collection
scheme, we train the model with different training set sizes.

As shown in Fig. 8(b), by comparing the performance of the
different proportion of training set size, we can find that when
we train the model with five samples per class, the precision,
recall, and F-score are 73.1%, 73.3%, and 73.4%, respectively.
The model has the best performance when we have a training
set size of 20 for training. When the training set size exceeds 15,
the performance of the model tends to be stable. Therefore, the
data we collect are enough to build the model.

Impact of Classifier: We also use other machine learning
methods to construct the model for performance comparison.
The training set and testing set are the same as in Section IV-A.
As shown in Fig. 8(c), the accuracies of the models constructed
by traditional machine learning methods cannot exceed 85%.
The accuracies of the models constructed by DNN and LSTM
are also lower than that of our model. Therefore, the model built
with CNN can realize the best recognition performance.

Impact of Data Sample: In order to prove the impact of sample
difference on the number of participants, age, ratio of sex, we
rerecruit ten participants, including five senior men (SR), with
ages from 50 to 65, and five young females (F), with ages from
20 to 30. Each volunteer performs each kind of head gesture 20
times. We retrain and evaluate the models based on the different
data samples. As shown in Fig. 8(e), the precision, recall, and
F1-score are above 90%. Therefore, age and gender factors have
little effect on performance. Furthermore, when the recruitment
numbers increase to 28 (including seven females), the accuracy
is almost unchanged. In addition, we also build different models
based on 10, 15, 20, 25, and 30 participants, respectively. As
shown in Fig. 8(d), the result shows that as the number of
participants exceeds 20, the performance of the model tends
to be stable. Therefore, it is enough to build our model based on
the 20 participants.

Impact of Data Augmentation: In order to study the impact
of data augmentation on performance, we train the models with
data augmentation and without data augmentation, respectively.
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The result is shown in Fig. 8(f). The precision, recall, and F-score
of the model without the data augmentation are 86.3%, 86.4%,
and 86.6%, respectively. The result shows that the performance
of the model with data augmentation is 7% higher than that
of model without data augmentation. Therefore, even if we
cannot obtain a large number of training samples, we can use
the augmentation method to cover uncollected data and avoid
overfitting.

Impact of Gait Separation: In order to evaluate the impact of
gait separation on the performance, we build the model based
on the original data without filtering. As shown in Fig. 8(g), the
precision, recall, and F1-score are lower than those of our model.
This is because that gait has a significant influence on the data
distribution, which reduces the model performance.

F. Delay and Energy Consumption

Large time delay and high power consumption will reduce the
user experience. We evaluate the running time of algorithms,
including head gesture detection and recognition. We deploy
the algorithm on an 8-core Intel (R) Core (TM) i7-9700 CPU
and 16-GB RAM desktop computer. The total delay time of the
algorithm is 4.7±0.1 ms, which has a short delay time and is
acceptable by users. We also use a voltmeter to measure the av-
erage power consumption of data transmission from earphones
for 10 min. The result shows that the power consumption is
7.13±0.21 mW/min. with the sampling rate of 100 Hz. There-
fore, the proposed algorithm has low energy consumption and
short delay [35].

V. CONCLUSION

In this article, we presented our prototype system for privacy
preservation and data analytics in IoT-enabled healthcare based
on deep learning, which can separate the privacy information
mixed in the raw data and analyze health-related data. It works by
isolating privacy-sensitive content, extracting, and recognizing
nonprivacy data. We also evaluated the performances in different
scenarios and validated the effectiveness and robustness of the
system. The system can be used as a supplement to future
intelligent healthcare. With system architecture design, we can
also expand to other existing wearable devices for IoT-enabled
healthcare.

However, there are also some deficiencies in our work, which
will be further improved and studied in the future. First, because
of the time and cost constraints, the number of volunteers is
small. In future, we can recruit more volunteers to improve the
generalization performance of the system. We will also introduce
more policies to strengthen the protection of user identity [36].
Besides, the system needs to collect training samples in advance
to be trained, it is inconvenient in face of changeable scenarios.
In the future, we can use meta-learning technology to build the
system directly in different scenarios, which can reduce the
adaptive burden. Finally, we aim at the disease prevention of
“office workers” and “pubbers” with earphones. The nontime
series health-related data, such as text data, cannot be protected
directly using our scheme. There will be some privacy-related
behavior characteristics for people who have already suffered

from cervical spondylosis. The health-related data may be mixed
with other behavior information in other scenarios. They are not
included in the scope of our research. However, our scheme can
still provide a reference for other scenarios. We will improve our
technological solutions to build a more secure e-Health system
in the future.
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