
Chapter 28

Dynamic Load Balancing

in Software-Defined Networks Using

Machine Learning

Kunal Rupani, Nikhil Punjabi, Mohnish Shamdasani and Sheetal Chaudhari

1 Introduction

In the SDN architecture, the data plane and the control plane are separated. The SDN

architecture facilitates network virtualization. It is directly programmable, scalable

and allows integration of services like load balancing, Firewall and Intrusion Detec-

tion System (IDS). The SDN architecture consists of three layers namely the appli-

cation layer, the control layer and the data layer. The application layer consists of

applications like load balancer, traffic monitoring, etc. The control layer is where the

SDN controller resides. The data layer is responsible for forwarding the data from

source to destination. In SDN, there has been limited research proposed on network

load balancing. In previously proposed projects, the controller gets information from

OpenFlow switches to analyze load on each link and accordingly modify the flow-

tables by using a particular load balancing strategy. Since a routing plan which is

dynamic and a static load balancing method is proposed in these strategies, these

strategies fail to take advantage of SDN and do not make an efficient load balancing

model. These algorithms work on SDN having multiple paths, but the strategy for

routing is determined by considering the load condition of next-hop only while the

property of global view in SDN is not leveraged. Therefore, such kind of strategies

cannot determine the effective path in real time and hence they cannot achieve an

ideal load balancing effect. To summarize, current research in load balancing in SDN

reveals that the existing algorithms are too simple for a complex problem like load

balancing and so they exhibit poor performance. It is also understood that in these

algorithms data gathering is not done to the fullest due to which the desired accuracy

is not achieved. The objective of the paper is to propose a system that load balances

an SDN-based network in real time in order to make data transmission in SDN more

efficient and reliable.

K. Rupani (B) · N. Punjabi · M. Shamdasani · S. Chaudhari

Sardar Patel Institute of Technology, Mumbai, India

e-mail: krupani8@gmail.com

© Springer Nature Singapore Pte Ltd. 2020

S. Bhalla et al. (eds.), Proceeding of International Conference

on Computational Science and Applications, Algorithms for Intelligent Systems,

https://doi.org/10.1007/978-981-15-0790-8_28

283



284 K. Rupani et al.

2 Related Work

In [2], the back-propagation artificial neural network is trained to find the integrated

load condition of the network. Flow rules indicating the best path are then pushed

into the switches by the controller. However, this technique lacks performance and

does not consider node utilization as a part of load balancing a network. In [3], the

algorithm can balance link load in a network quickly to resolve some congested

path. Also minimized packet loss is achieved by changing paths of flows. But this

technique consumes more time and does not consider node utilization. In [4], using

the fuzzy synthetic evaluation model (FSEM) the paths can be dynamically adjusted

by taking advantage of the global view of the network. However, this technique is not

reliable as there is packet loss due to the time taken to detect link failure. In [5], as the

load balancing algorithm keeps running, its performance improves over time but its

initial performance is found to be low. The algorithm first finds the shortest path and

then checks for link utilization. In [6], the fuzzy synthetic evaluation algorithm with

dynamic weight (FSEADW) is used which supports dynamic weights to dynamically

realize network status in real time to achieve better load balancing. However, this

technique too ignores the overall network utilization as it does not consider node

utilization.

3 Proposed System

The proposed system consists of two subsystems namely the simulation subsystem

and the machine learning subsystem. The two subsystems are interconnected using

the Django REST Framework using which path features are sent over from the simu-

lation subsystem to the machine learning subsystem in JSON format using the HTTP

protocol. Figure 1 shows the network architecture diagram for the proposed SDN

load balancing system. The proposed system has minimal processor and memory

requirements. Sending data in the form of JSON is again efficient as it requires less

bandwidth.

3.1 Simulation

Mininet simulation software is used to simulate a DCN-based fat-tree topology net-

work containing 8 hosts and then extended for network containing 16 hosts. The

topology with 8 hosts is described. The hosts are labeled from h1 to h8. They are

connected using switches which are arranged in the form of a tree structure. The

topologies are created beforehand in python using the NetworkX library [7]. The

Mininet simulator makes use of Floodlight Controller which acts as the SDN con-

troller. The Mininet software provides support for python in the form of APIs. Using



28 Dynamic Load Balancing in Software-Defined Networks … 285

Fig. 1 Network architecture for proposed system

these predefined APIs, path features are extracted for the machine learning sub-

system. Wireshark [8] is used to monitor the traffic while Mininet is running in

parallel.

3.2 Artificial Neural Network

This subsystem is used to find the minimum loaded path between a source node

and destination node in real time. Sequential model from keras library is used to

train the dataset obtained from the simulation subsystem. The structure of the back-

propagation artificial neural network is shown in Fig. 2. The predictors, i.e., the inputs

are BW Ratio, latency, packet loss rate, the number of hops and node utilization

from source to destination. These inputs form the input layer. Figure 2 shows that

the hidden layer has three neurons. This number is varied from three to eleven using

the formula given in (1) specified in [2] and the most accurate model is chosen. In

(1), N is the number of neurons in the hidden layer, the number of neurons in the

input layer is denoted by m, the number of neurons in the output layer is denoted by

n and a is a constant between 1 and 10. The output layer gives the integrated load on

the input path depending upon the path features. The activation function used is the

popular ReLU activation function as it overcomes the problem of gradient descent.

The learning rate is also adjusted to get an accurate model.



286 K. Rupani et al.

Fig. 2 Artificial neural

network structure with three

neurons in the hidden layer

The number of epochs value is set to 100 so that the mean squared error at the end

of training is very close to zero. Also, initially, random weights are assigned. Setting

the network parameters correctly is a must to get the desired accuracy of the model.

N 2
= m + n + a (1)

4 Methodology

SDN controller has the property of global view of network that it possesses at any

stage of the simulation. All the paths from one node to every other node are found

by updating the topology information of the network. By leveraging the property of

global view in SDN, the effective load condition of every path can be determined

easily. The System Flow Diagram is shown in Fig. 3.

4.1 Network Simulation

Network simulation is first done for data collection and then for final testing. For

testing the system, running the Floodlight Controller is the first step of network

simulation. Running the topology using Mininet is the next step. Then the load

balancer script is executed. Here, the source host is entered by the user. Then the

least loaded host is selected as the destination. The selected hosts are activated and



28 Dynamic Load Balancing in Software-Defined Networks … 287

Fig. 3 System flow diagram

traffic is generated between them. Wireshark [8] is used to monitor the traffic between

these hosts. Port statistics are obtained using the in-built APIs of Mininet.

Then using Dijkstra’s algorithm, shortest path(s) is/are determined between the

source and destination. If multiple shortest paths are found, then the machine learning

module comes into picture otherwise the shortest path obtained becomes the best path

itself. To overcome link failure, the first step is to detect link failure and the other step

is to choose an alternate path. Link failure is detected by the SDN controller when

a switch is unable to send a packet-in message to the controller within a predefined

timeout period [9]. The SDN controller then informs the load balancer about the link

failure. The load balancer temporarily removes all the paths containing the failed link

and finds the least loaded path as usual. Node failure is overcome by detecting the

node failure and finding the backup path while the SDN controller performs failure

recovery as specified in [10]. Node failure is detected by the SDN controller when the

node stops sending packet-in message to the controller within a predefined timeout



288 K. Rupani et al.

period [9]. The load balancer utilizes the remaining backup paths for finding the best

path between the source host and the destination host.

4.2 Data Collection and Preprocessing

The training dataset is obtained by running the Mininet simulator repeatedly after an

interval of three minutes and recording all the path information using the APIs. The

port statistics obtained are then used to calculate the path features using the formulae

shown in the equation below. This method ensures that there is variety in the dataset

which is usually the case in real-world networks. Such variety also ensures that the

model is accurate. Such collection of data is only possible because of the global view

architecture of SDN. This training data collected from the simulation subsystem is

stored in the form of an excel sheet. This training dataset is first loaded into the

program and then examined for errors. After cleaning, the data comes scaling of data

after which the training data is ready. The testing data is obtained in real time in

JSON format using Django. This data is converted into proper format after which it

is ready for testing.

1. BWRatio: BWRatio is the subtraction of cumulative transmitted bytes B(t)

and previous cumulative transmitted bytes B(T − 1) divided by the maximum

bandwidth BWRatio (MAX).

BWRatio = B(T ) − B(T − 1)/BWRatio(MAX) (2)

2. Packet Loss Rate (P Loss): It is the ratio of the number of packets not received and

the number of packets transmitted. Packet(T ) is the number of packets transmitted

while Packet(R) is the number of packets received.

P Loss = Packet(T ) − Packet(R)/Packet(T ) (3)

3. Transmission Latency: It is the ratio of bytes transmitted Byte and the transmis-

sion rate (trRate).

Latency = Byte/trRate (4)

4. Total Node Utilization: It is the sum of node utilization values of all the switches

along the path.

5. Transmission hops: This value is directly obtained by using the predefined API

for hops.



28 Dynamic Load Balancing in Software-Defined Networks … 289

4.3 Training and Testing Neural Network Model

The back-propagation artificial neural network is trained on the training data for 100

epochs to get the desired accuracy. Training is hardly time-consuming as the dataset

has about 600 records collected at different times and the training time of a real-time

system is less valuable than the testing time, i.e., the predicting time. The testing time

needs to be negligible which is the case here. The model is evaluated with ‘Mean

Squared Error’ as the loss function while ‘Mean Absolute Error’ is used as a metric

to test the accuracy of the model. Now the shortest paths with their features are used

to predict the integrated load on each one of them.

5 Results

5.1 Training Results of BPANN

The result after training the model is a graph of mean absolute error versus the number

of epochs. The graph in Fig. 4 is for topology with 8 hosts. In this graph, the mean

absolute error at the end of training the model with n = 7 is found to be closest to

zero which means that the model is most accurate when n = 7. So, the value of n is

set to 7. The graph in Fig. 5 is for topology with 16 hosts. In this graph, the mean

absolute error at the end of training the model with n = 9 is found to be closest to

Fig. 4 Mean absolute error for topology with 8 hosts



290 K. Rupani et al.

Fig. 5 Mean absolute error for topology with 16 hosts

zero which means that the model is most accurate when n = 9. So, the value of n is

set to 9.

5.2 Comparing Latency Before and After Load Balancing

The iperf tool [11] is used to get the network statistics for analysis. The iperf command

gives the throughput while the ping command is used to measure the latency. Figure 6

depicts the final result in the form of latency and throughput recorded before and

after load balancing. In Table 1, the average latency between h1 and h8 decreases

and the throughput increases. In Table 2, the average latency between h1 and h4

decreases and the throughput increases. Similar results are noted for a different pair

of hosts in both topologies. This means that the load balancing is working.

6 Conclusion

Dynamic load balancing is achieved by predicting the effective load on all the shortest

paths and selecting the path with minimum load in real time. The output of the system

is nothing but this least loaded path. The model is trained successfully on topologies

with 8 and 16 hosts. This means that the proposed system is scalable. The system can

also handle link failure and node failure. This means that the system is reliable. The



28 Dynamic Load Balancing in Software-Defined Networks … 291

Fig. 6 Result tables

proposed system can be used as a load balancing module in an SDN-based system

to improve its performance.

References

1. http://mininet.org/

2. Chen-xiao C, Ya-bin X (2016) Research on load balance method in SDN. Int J Grid Distrib

Comput 9(1):25–36. http://dx.doi.org/10.14257/ijgdc.2016.9.1.03

3. Lan Y-L, Wang K, Hsu Y-H (2016) Dynamic load-balanced path optimization in SDN-

based data center networks. In: 2016 10th international symposium on communication sys-

tems, networks and digital signal processing (CSNDSP). https://doi.org/10.1109/csndsp.2016.

7573945

4. Li J, Chang X, Ren Y, Zhang Z, Wang G (2014) An effective path load balancing mechanism

based on SDN. In: 2014 IEEE 13th international conference on trust, security and privacy in

computing and communications. https://doi.org/10.1109/trustcom.2014.67

5. Zakia U, Ben Yedder H (2017) Dynamic load balancing in SDN-based data center networks.

In: 2017 8th IEEE annual information technology, electronics and mobile communication

conference (IEMCON). https://doi.org/10.1109/iemcon.2017.8117206

6. Wang T, Guo X, Song M, Peng Y (2017) A fuzzy synthetic evaluation algorithm with dynamic

weight for SDN. In: 2017 IEEE 2nd information technology, networking, electronic and

automation control conference (ITNEC). https://doi.org/10.1109/itnec.2017.8284896

7. https://networkx.github.io/

8. https://www.wireshark.org/

9. Xu H, Yan L, Xing H, Cui Y, Li S (2017) Link failure detection in software defined networks: an

active feedback mechanism. Electron Lett 53(11):722724. https://doi.org/10.1049/el.2017.082



292 K. Rupani et al.

10. Zhang S, Wang Y, He Q, Yu J, Guo S (2016) Backup-resource based failure recovery approach

in SDN data plane. In: 2016 18th Asia-Pacific network operations and management symposium

(APNOMS). https://doi.org/10.1109/apnoms.2016.7737211

11. https://iperf.fr/

12. https://keras.io/getting-started/sequential-model-guide/


