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ABSTRACT

Repackaged Android applications (or simply apps) are one
of the major sources of mobile malware and also an impor-
tant cause of severe revenue loss to app developers. Al-
though a number of solutions have been proposed to detect
repackaged apps, the majority of them heavily rely on code
analysis, thus suffering from two limitations: (1) poor scal-
ability due to the billion opcode problem; (2) unreliability
to code obfuscation/app hardening techniques. In this pa-
per, we explore an alternative approach that exploits core
resources, which have close relationships with codes, to de-
tect repackaged apps. More precisely, we define new features
for characterizing apps, investigate two kinds of algorithms
for searching similar apps, and propose a two-stage method-
ology to speed up the detection. We realize our approach
in a system named ResDroid and conduct large scale eval-
uation on it. The results show that ResDroid can identify
repackaged apps efficiently and effectively even if they are
protected by obfuscation or hardening systems.

1. INTRODUCTION
Repackaged apps have been one of the major sources of

mobile malware on Android for many years [16,18]. A recen-
t study showed that 86% malware samples were repackaged
version of legitimate apps [48]. BitDefender even found that
1.2% of apps on Google Play have been repackaged to deliver
ads and collect information [2]. Apps repackaging has also
become a major threat to app economy [9]. By modifying
the embedded ad’s client ID or replacing it with new ad li-
braries, an attacker canmake profits through apps developed
by others [24]. As another example, repackaging paid app-
s and uploading the modified versions to third-party mar-
kets will result in revenue losses to developers. Moreover,
repackaged financial apps not only cause financial loss to
customers [31], but also compromise companies’ reputation
and users’ experiences [9].
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Although a number of systems have been proposed to i-
dentify repackaged apps, how to effectively and efficiently
detect them remains a challenging problem. One possible
reason is that the majority of existing systems heavily rely
on codes’ features to quantify the similarity between app-
s, such as diverse hash values [1, 27, 47], abstract syntax
trees (AST) [37], control flow graph (CFG) and its vari-
ants [13,22,43], program dependency graph (PDG) [19,20],
etc., thus suffering from two limitations:
Poor scalability due to the billion opcode problem.
Hanna et al. estimated that the total amount of opcodes in
all apps is around 1.45 billion [27] not to mention the rapid
increase in the number of new apps. Therefore, processing
millions of apps in many Android markets demands scalable
and efficient solutions.
Unreliability to code obfuscation/app hardening tech-
niques. Since most of existing solutions borrowed methods
from the area of code clone detection that has been stud-
ied for 20 years [11,39,41], evasion solutions are available to
dedicated attackers, let alone new obfuscation and harden-
ing techniques [17,29,43,44].

We explore an alternative scheme, a novel resource-driven
approach, to detect repackaged apps. Our approach is mo-
tivated by two observations. First, Android apps usual-
ly contain various resources, such as layout and style re-
sources for graphical user interface (GUI). Although these
resources are separated from the executable .dex file, there
are close relationships between resources and codes. Second,
attackers seldom modify original resources in order to let
the repackaged apps work properly and have the same look-
and-feel. Moreover, existing obfuscation/hardening systems
rarely handle resources. Although not all resources are crit-
ical to an app, some core resources cannot be easily mod-
ified by attackers without affecting the app’s functionality
or quality-of-experience (QoE). Therefore, we exploit core
resources and the related codes to quantify apps’ similarity.

To scale up this approach, we propose a two-stagemethod-
ology for grouping similar apps. More precisely, statistical
features are used in the first stage to quickly divide apps
into groups and then at the second stage structural features
are employed to further cluster apps in each group. Note
that the second stage can be performed in parallel. Since
the methodology is general, we investigate the performance
of two kinds of algorithms to search for similar apps: near-
est neighbor search (NNS) [8] and clustering [7]. The former
may quickly locate apps that are very similar to a target app
but may miss other similar apps. The latter can partition
apps into different clusters from a global view but has higher



computational complexity.
We have realized our approach in a system named Res-

Droid and conducted extensive evaluation on it. The exper-
imental results not only validate its effectiveness and effi-
ciency but also reveal interesting observations. In summary,
this paper makes the following contributions:

1. We propose a novel resource-driven approach to de-
tect repackaged apps. To our best knowledge, it is the
first systematic examination on leveraging resources
for repackaged apps detection.

2. We propose a two-stage methodology to scale up the
approach and investigate the performance of two kinds
of algorithms for searching similar apps: nearest neigh-
bor searching and clustering.

3. We realize our approach in a system named ResDroid
with 2770 lines of Python code, 1157 lines of Java code,
and 309 lines of C code. Although a simultaneous re-
search, ViewDroid [45], also adopts GUI-related fea-
tures, there are significant differences between it and
ResDroid in terms of feature selection, comparison al-
gorithms, and scalability, as detailed in Section 7.

4. We conduct the first study on the effect of commercial
app hardening systems on detecting repackaged apps.
We also develop DexDumper for dynamically dumping
hardened apps from memory for detection.

5. We conduct extensive evaluation on ResDroid with
169,352 apps crawled from 10 markets and 200 real
repackaged apps. The results show that ResDroid can
detect repackaged apps effectively and efficiently.

The rest of this paper is organized as follows. Section 2
introduces the problem and background knowledge. Section
3 and Section 4 detail our methodology and the implemen-
tation of ResDroid, respectively. The experimental results
are reported in Section 5. Section 6 discusses ResDroid’s
limitations and future work. After introducing the related
work in Section 7, we conclude the paper in Section 8.

2. BACKGROUND

2.1 Problem Statement
The majority of existing approaches heavily depend on

code-level features, thus suffering from two limitations: (1)
poor scalability to process billions of opcodes; (2) unrelia-
bility to code obfuscation/app hardening techniques. The
goal of this paper is to explore an alternative scheme, a
resource-driven approach, to detect repackaged apps. Mo-
tivated by the observation that existing attacks and code ob-
fuscation/app hardening techniques seldom handle resources,
we investigate how to employ resources to detect repackaged
apps from four aspects, including, feature selection, feature
extraction, scalable approaches for searching similar apps,
and limitations. Note that the new approach complements
the existing code-level systems instead of replacing them.

2.2 Application Resources
Android developers are recommended to externalize re-

sources from the codes so that they can be maintained in-
dependently [6]. Figure 1 shows an example of app codes
and resources. MainActivity.java defines an activity that

Figure 1: Example of the interaction between app code
and resources.

provides users a GUI for interaction. When an activity is
launched, the Android runtime creates an activity object
and invokes the onCreate method defined at lines 3-7.

An activity may contain other GUI components, which
can be added to its View dynamically or defined by a layout
file (in XML format). Lines 27-31 define the layout used by
MainActivity. Line 5 indicates that MainActivity loads its
view from main act layout.xml.
Fragment is a special component that represents a behav-

ior or a portion of user interface within an activity. It can
be considered as a modular section of an activity, which has
its own layout. main act layout.xml defines a fragment as-
sociated with the class com.example.TextFramgment, whose
content is shown in lines 10-19. When MainActivity is s-
tarted, its layout file main act layout.xml will be loaded and
the activity will present users the fragment, whose layout is
defined in text fragment.xml and loaded in line 14 via the
inflate method. In this example, the final GUI present-
ed to users is actually the view of the fragment defined in
text fragment.xml.



The GUI component text fragment (lines 40-42) is a cus-
tomized component com.example.MyEditText. It is defined
in my editor.xml (lines 46-48), and the corresponding codes
are in com.example.MyEditText.java, as specified in line 47.

When interacting with an app, users can navigate between
(i.e., transition between) different activities [10]. We define
the transition among activities as activity transition graph
(ATG), where each vertex represents an activity and an edge
indicates the existence of transitions through Android meth-
ods startActivity() or startActivityForResult().

App resources are referenced through IDs. For example,
after main act layout.xml is parsed, an ID will be signed
to it. The auto-generated file R.java records all resources
and their IDs. App codes access the resources through their
IDs. For example, MainActivity sets its view defined in
main act layout.xml by referencing R.layout.main_act_lay
out. Moreover, developers can use the scheme @type/name

to reference other resources. For instance, line 38 references
a string resource named “tv text” using @string/tv_text.

2.3 Event Handlers
There are two kinds of event handlers in Android apps.

GUI event handlers. GUI objects can be associated with
event handlers. For example, given a button, the execu-
tion will reach its onClick function, defined in the interface
android.view.View.OnClickListener, after a user clicks it.
Lifecycle event handers. An activity instance may tran-
sition among different states in its lifecycle [5]. Develop-
ers can define how an activity behaves when it transitions
from one state to another in callback methods. For exam-
ple, when an activity is started, its onCreate and onStart

callback methods will be invoked successively.
For apps without GUI/activities, we consider callbacks in

their Services and Broadcast Receivers as event handlers.

3. METHODOLOGY

3.1 Overview
Figure. 2 depicts our resource-driven solution for detect-

ing repackaged apps, which is realized in ResDroid and the
implementation is detailed in Section 4.

The feature extraction module first identifies an app’s ma-
jor packages according to their importance measured by the
PageRank algorithm [34] (Section 3.3). Then, core resources
along with their statistical features and structural features
will be determined according to major packages and the ap-
p’s manifest file. The statistical features (Section 3.4) are
lightweight in terms of computation and comparison but
may not provide precise information about an app. In con-
trast, structural features (Section 3.5) can better character-
ize an app at the cost of the complexity of computation and
comparison.

To scale up the detection formillions of apps, we propose a
two-stagemethodology that employs the divide-and-conquer
strategy to identify similar apps within small groups of app-
s. More precisely, ResDroid first uses statistical features to
divide apps into small classes in the coarse-grained process-
ing module and then employs structural features to identify
similar apps within each group in the fine-grained process-
ing module. The output is a set of potential repackaging
groups (PR-Groups) containing suspicious repackaged apps.
Our approach is rational because repackaged apps are usual-
ly similar to original apps and the process of clustering apps

in different groups can be parallelled.
Finally, ResDroid verifies whether those similar apps are

repackaged apps according to their signatures. Since the
percentage of suspicious apps is usually small, they could
be further inspected by in-depth code analysis systems [19],
dynamic analysis systems [23, 38], malware detection sys-
tems [25], or even manual verification if necessary.
Based on the selected features, our solution can adopt dif-

ferent algorithms to find similar apps. Here, we examine the
performance of two kinds of popular algorithms: clustering
algorithms and nearest neighbor search (NNS) algorithms in
Section 3.6 and Section 3.7, respectively.

3.2 Hardening Detection
To secure Android apps, hardening techniques and ser-

vices have emerged [3] (e.g., Bangcle1, iJiaMi2). Typically,
they encrypt an app’s classes.dex and load it into memo-
ry through java native interfaces (JNI). Hardening not on-
ly raises the bar for attackers to repackage apps, but al-
so thwarts ResDroid to extract apps’ features. To tackle
this problem, we design and implement DexDumper (Sec-
tion 4.1) to dynamically restore the classes.dex.

Before extracting features, ResDroid will check whether
the app is hardened or not by looking for patterns of hard-
ening services. For example, since Bangcle inserts a shared
library libsecexe.so into hardened apps, an app containing
such file is considered as a hardened app. Moreover, Res-
Droid will invoke DexDumper to dump the original class-
es.dex from a hardened app for feature extraction.

3.3 Major Packages and Core Resources
Not all resources are critical to an app and/or have close

relationship with major codes. To raise the bar for an at-
tacker to evade the detection by modifying features, we de-
fine core resources, which are used by major packages, with
the following requirements: (1) it should be difficult for an
attacker to manipulate these resources. In particular, ran-
dom manipulations by an attacker will impair an app’s func-
tionality and/or QoE, or such manipulations can be easily
filtered out; (2) they are representative.

Major packages refer to important codes in an app ex-
cluding imported libraries. We created a blacklist to filter
out frequently-used ad and third-party libraries. Motivat-
ed by the module decoupling technique in [46], ResDroid
first constructs a package dependency graph, an undirected
and weighted graph, where each vertex represents a package,
and an edge between two vertexes indicates the existence of
method invocations between them. The weight of an edge
is increased by one if it spots a method invocation between
the two packages. Then, ResDroid ranks the packages using
the PageRank algorithm [34] and selects the top 5 packages
as major packages.

3.4 Statistical Features

3.4.1 Definition
We define 15 statistical features, which can be easily re-

trieved, and use them in the coarse-gained processing mod-
ule. Let A = {a(i)}i=1...N be a set of apps. The statisti-

cal features of each sample a(i) is represented as a vector

1http://www.bangcle.com
2http://www.ijiami.cn
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Figure 2: The procedure of our resource-driven approach.

v(i) = (f
(i)
1

, ..., f
(i)
15

). The first five dimensions (f
(i)
1

, ..., f
(i)
5

)
include (1) number of activities; (2) number of permission-
s, both system-defined and custom ones are included; (3)
number of intent filters; (4) average number of .png files per
drawable* directory; and (5) average number of .xml files

per directory in res. The next 10 dimensions (f
(i)
6

, ..., f
(i)
15

)
include the average number of references to the 10 most-
referenced resources. Table 1 lists the top resources in 24,810
randomly selected apps. More features, such as number of
services, can be added to better profile an app without dra-
matically increasing the complexity.

Note that we use the average number of .png and .xm-

l files instead of the total amount, because they are more
representative. For example, apps that support multiple dis-
play resolutions will have several set of drawables. For ex-
ample, drawable-hdpi contains bitmap drawables for high
screen densities while drawable-ldpi has objects for low-
density displays. As another example, files in values-zh and
values-fr provide Chinese and French supports, respective-
ly. If an app is repackaged with extra language support, the
total number of certain kinds of resources will increase but
the average values will not be affected.

# Type Total Average
1 id 6,631,598 267
2 drawable 3,616,963 146
3 string 1,964,378 79
4 color 1,024,896 41
5 style 823,848 33
6 dimen 623,906 25
7 layout 248,097 10
8 xml 136,730 6
9 integer 88,130 4
10 array 76,670 3

Table 1: 10 most referenced resource types in 24,810 apps
randomly selected from our dataset.

3.4.2 Comparison
Since the features’ ranges are quite different, we normal-

ize v(i) and get a new vector v
(i)
n = (F

(i)
1

, ..., F
(i)
15

), where

each dimension ranges in [0, 1]. We calculate F
(i)
j using the

following function:

F
(i)
j = norm(f

(i)
j ) =

√√√√ f
(i)
j −min(f

(1...N)

j )

max(f
(1...N)

j )−min(f
(1...N)

j )
(1)

Note that min(f
(1...N)

j ) and max(f
(1...N)

j ) are the minimal
and maximal values of the jth feature for all apps in A. The
similarity between two apps a(k) and a(h) according to the
statistical features is defined as:

s(k,h) = e−Dc(v
(k)
n ,v

(h)
n ), (2)

whereDc(v
(k)
n , v

(h)
n ) is the Euclidean distance of the two nor-

malized feature vectors.

3.5 Structural Features
The structural features cover two types of information: (1)

activity layout; (2) event handler. These features are reli-
able and representative because: (1) repackaged apps usual-
ly have the same GUI as the original apps to avoid affecting
their functionality and QoE; (2) although an dedicated at-
tacker can re-implement an existing layout, it takes time to
achieve the completely same appearance and it is difficult
to apply this process to all apps automatically; (3) since
GUI objects and the associated event handlers determine
the functionality of an app, attackers usually keep existing
event handlers to avoid impairing the original app’s func-
tionality. Therefore, ResDroid compares two apps’ event
handlers instead of all codes.

As an app may have multiple activity layouts and differ-
ent kinds of event handlers, features extracted from a single
layout or event handlers should be well organized to form
the final structural features. To achieve this goal, for each
app a(i) ∈ A, we first perform static analysis to construct
its ATG and then traverse the ATG using depth-first search
algorithm starting from the main activity of a(i). If an ap-
p has no main activity, we choose the first activity defined
in its AndroidManifest.xml. We remove the activities that
do not belong to core resources from the generated activ-
ity sequence AS(a(i)). The following layout features (Sec-
tion 3.5.1) and event handler features (Section 3.5.2) are

arranged with the order defined in AS(a(i)).

3.5.1 Activity Layout Feature
For an activity act, we denote its layout as L(act). We tra-

verse L(act) using the pre-order traversing algorithm and ob-
tain an element sequence 〈e1, ..., em〉, where ei (i = 1, ...,m)
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stands for a GUI object, such as Button, EditText. We de-
fine a function α for mapping ei to an English letter (‘a’
to ‘z’, ‘A’ to ‘Z’) according to its type. For example, But-
ton is labelled as ‘b’, EditText as ‘e’, and View as ‘v’, etc.
Since customized components are usually derived from ex-
isting components and their names may be obfuscated, we
use their ancestors’ type to label them. For instance, a Pho-

toView extending View is also labeled as ‘v’.
Following this rule, L(act) is converted into a sequence

LS(act) = 〈α(e1), ..., α(em)〉. For an app a(i) ∈ A and

AS(a(i)) = 〈act1, ..., actn〉, its layout feature will be:

LF (a(i)) = 〈LS(act1), ..., LS(actn)〉 (3)

3.5.2 Event Handler Feature
Event handler feature refers to the corresponding call-

back methods. We perform static analysis on each even-
t handler and extract their method signatures [21]. Let
σ(m) denote the signature of an event handler m. Since
an activity act may have several event handlers, we repre-
sent its event handler feature as a sequence that consists
of method signatures in lexicographical order : EH(act) =

〈σ(m1), ..., σ(mk)〉. Given an app a(i) ∈ A and AS(a(i)) =

〈act1, ..., actn〉, its event handler feature EF (a(i)) is:

EF (a(i)) = 〈EH(act1), ..., EH(actn)〉 (4)

3.5.3 Comparison
When quantifying the similarity between two apps a(k)

and a(h) using the structure features, we define the distance
between a(k) and a(h) as:

Df (a
(k), a(h)) = wl ∗ ds

(
LF (a(k)), LF (a(h))

)

+ we ∗ ds

(
EF (a(k)), EF (a(h))

)
,

(5)

where wl and we are pre-defined weights (the actual values
assigned to wl and we are discussed in Section 5). ds(s1, s2)
measures the distance between two sequence s1 and s2, which
is defined as:

ds(s1, s2) = 1− length(LCS(s1, s2))

min(length(s1), length(s2))
, (6)

where LCS(s1, s2) is the longest common sequence of s1 and
s2, and length(s) is the length of sequence s. The advantage
of LCS is that even if noise is inserted into one sequence the
final output of ds may remain unchanged. Therefore, even
though an attacker may insert junk resources to change an
app’s structural features, ResDroid will not be affected.

3.6 Clustering-based Processing
We adopt the spectral clustering [7] algorithm to cluster

apps according to the normalized statistical features. Spec-
tral clustering techniques leverage the spectrum (eigenval-
ues) of the similarity matrix of the input data to perform
dimensionality reduction before performing the clustering.
It allows us to add more features for further improving the
performance in future work.

We apply the complete-linkage hierarchical clustering al-
gorithm and the DB cluster validity index [26] to split each
coarse-grained cluster into fine-grained clusters (i.e., PR-
Groups). In hierarchical clustering, the linkage criterion
determines the distance between sets of observations. We

chose the complete-linkage criterion because it usually re-
sults in compact clusters with small diameters. Although it
may be sensitive to outliers, we can filter out outliers before
conducting the hierarchical clustering.

3.7 NNS-based Processing
Clustering algorithms may compare every pair of apps,

thus leading to high computation complexity. NNS algo-
rithms allow us to only compare apps that are likely to be
similar and therefore dramatically reduce the comparisons.
When applying NNS algorithms, we adopt the k-d tree tech-
nique [35]. In the coarse-grained processing, we select candi-
date app pairs with the help of k-d tree. In the fine-grained
processing we compare apps in pair to obtain PR-Groups.

3.7.1 Selecting Candidate Pairs
We first build a k-d tree and insert statistical feature vec-

tors v(i) (i = 1, ..., N) to this tree (k = 15 because of the
15 dimensions). Since different apps may have identical sta-
tistical features, we cannot insert both of them into the k-d
tree for the sake of avoiding duplicated nodes. For example,
given two apps a(i) and a(j) with the same feature vectors
(i.e., v(i) and v(j)), if a(i) is in the k-d tree, we cannot insert

a(j). To solve this problem, we sort the statistical feature
vectors of all apps according to the lexicographical order and
then group apps having identical feature vectors. As shown
in Figure 3, v(5635) and v(9440) are identical, and therefore
we group a(5635) and a(9440) into the same cluster cn. Then,
we insert clusters containing one or more apps into the k-d
tree, where each node represents a cluster. When we query
n nearest neighbors for each cluster Ci, we regard Ci and
its neighbors as candidate cluster pairs. For two clusters Ci

and Cj , the candidate app pairs include: (1) app pairs in
Ci; (2) app pairs in Cj ; and (3) app pairs between Ci and
Cj .
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Figure 3: Statistical feature vectors are sorted in Lexico-
graphical order. Apps that have identical feature vectors are
grouped in the same cluster.

3.7.2 Pair-wise Comparison
The distance between two apps a(k) and a(h) is measured

by Df in Eqn.(5). Given a threshold θ, if Df (a
(k), a(h)) is

smaller than θ, they are in the same PR-Group.

3.8 Repackaging Verification
Apps in PR-Groups have similar appearance and func-

tionalities. However, since developers may create a bunch of
similar apps that cannot be considered as repackaged apps,
we perform a verification on apps in each RP-Groups. More
precisely, we extract developer certificates from apps and
distinguish each certificate with their MD5 checksum. If all
apps in a PR-Group share the same certificate, they are not
repackaged. Otherwise, apps repackaging is detected.

4. IMPLEMENTATION
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We have implemented Resdroid with 2770 lines of Python
code, 1157 lines of Java code, and 309 lines of C code.

4.1 DexDumper
To handle hardened apps whose original classes.dex is

encrypted or hidden in shared libraries, we design and imple-
ment DexDumper that dumps the original classes.dex of a
hardened app from memory during runtime. It is motivated
by the observation that the Dalvik virtual machine (DVM)
cannot run encrypted classes.dex and therefore the origi-
nal classes.dex will be restored before being executed.

DexDumper first invokes the ptrace system call to at-
tach to the process of a running hardened app, and then
reads the app’s memory and searchs for the dex files. As
the memory space of a process is very large, DexDumper
manages to narrow the searching scope to efficiently locate
the target dex code. More precisely, it reads the process
mapping file of the hardened app, namely /proc/PID/maps

(PID stands for the app’s process ID), where we can get the
start address, the end address, and the attributes of each
memory piece. Note that the memory where dex files are
mapped into has attributes “r-xp”, meaning that the area is
readable (r), executable (x) and private (p). From memo-
ry pieces with such attributes, we can dump a set of dex

format files since some pre-loaded runtime libraries (e.g.,
ext.jar@classes.dex) are also located.

For each dumped dex files, DexDumper looks for the ap-
p’s package name (defined in the app’s manifest) in their
string constants pool. If found, it is considered as the orig-
inal classes.dex. Since hardening will not alter the app’s
resources, ResDroid takes in the dumped dex file and the
resources from the hardened apps for further process.

4.2 Feature Extraction
We employ apktool to decompile apps. Apktool can re-

store an app’s resources and translate its dex code into smali
format simultaneously. However, we found that apktoolmay
crash when processing some apps. For such apps, we use
aapt and baksmali to obtain their resources and smali code
separately. To construct ATG, we use A3E [10] to perform
static analysis on apps. It took around 22 hours to generate
ATGs for all apps in our data set. Then we run PageR-
ank to pick 5 major packages, which took another 3 hours.
In total, the extraction of statistical features consumed 25
hours. Such a long period is not unexpected because both
A3E and the PageRank algorithm are time-consuming. It is
acceptable as we only need to do this computation once.

When extracting layout features of apps, we observed that
93.7% apps define their layouts in XML under the res/lay-
out directory. Therefore, we can obtain their layout struc-
tures by traversing the XML files. Since some apps generate
their layouts dynamically, we use GATOR (v1.0) [4, 40] to
process them, which can construct an app’s layouts from
the codes by conducting static reference analysis for GUI
objects. We further enhanced GATOR from two aspects.
First, it does not handle certain GUI components (i.e., frag-
ments and dialogs). As fragment is widely used to realize
components reuse in different layouts, we added functions
to handle it. Second, as GATOR only takes in source codes,
we empowered it to accept dex files.

Similar to activities, layouts of fragments can be defined in
static XML files or dynamically created at runtime. There-

fore, we first identify fragment objects in activities, and then
examine the fragment and check whether its layout is de-
fined in resource file. If so, we directly parse the XML file
to obtain its structure. Otherwise, we construct its layout
structure by re-using the code logic designed for processing
dynamically-generated activity layouts. The extraction of
structural features took 49.7 hours.

4.3 Clustering and NNS
In coarse-grained clustering, we use a parallel implementa-

tion of spectral clustering [14], which can effectively handle
large-scale data. Since the last step of spectral clustering is
actually running k-means, the number of clusters should be
specified. We use x-means [36] to estimate a proper number,
instead of choosing it arbitrarily.

5. EXPERIMENTS
Our data set contains 169,352 apps crawled from 10 An-

droid markets, including the offical market Google Play and
9 other third-party markets. Our experiments were conduct-
ed on a PC running Ubuntu Linux 12.04LTS with an 8-core
Intel i7 3.50GHz CPU and 32GB memory.

5.1 Ground Truth
We use 200 pairs (400 apps) of repackaged and original

apps as ground truth to evaluate ResDroid. All the repack-
aged apps are real malware or adware (121 from SandDroid3

and other 79 from ContagioMobile4). The original apps were
downloaded from Google Play. There are chances that d-
ifferent versions of the same app present dissimilar GUIs.
Therefore, to make the ground truth more reliable, we on-
ly select original apps that have the nearest (or the same)
version codes with the repackaged ones.

5.2 Clustering-based Approach
During the coarse-grained processing, the x-means algo-

rithm [36] was used to estimate the number of clusters (de-
noted as C). The recommended value was 291. We also
tried other values close to 291 (i.e., 200, 250, 350, and 400)
when performing the spectral clustering. Figure 4 shows the
CDFs of the sizes of clusters. With the increment of C, the
average cluster size decreases. Figure 4(b) shows that when
C = 291 nearly 10% clusters (around 20% groud truth clus-
ters) containmore than 1,500 apps. As shown in Figure 4(c),
when C = 400, all clusters contain less than 1,500 apps.

It is obvious that the smaller a cluster is, the more quickly
(and hopefully more accurate) the hierarchy clustering will
be finished. Furthermore, although we need to performmore
clustering, it is easy to parallelize the tasks as they are inde-
pendent. So a large C may be expected. However, as shown
in Figure 4(d), more false negatives appear along with the
increment of C. The false negative is 0 when C = 291, but it
increases to 3 when C = 400. Moreover, a larger C requires
longer time to perform the spectral clustering. Considering
both cluster sizes and false negative rate, we finally chose
291 as the number of clusters in coarse-grained clustering.

We apply hierarchical clustering to each cluster produced
by coarse-grained clustering to generate PR-Groups. In hi-
erarchical clustering, we set the cutoff value to 0.1. That

3http://sanddroid.xjtu.edu.cn
4http://contagiominidump.blogspot.com
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Figure 4: CDFs of sizes of clusters produced by spectral (coarse-grained) clustering with different numbers of cluters

means, if two clusters have a distance less than or equal to
0.1, they will be merged into the same PR-Group.

1,605 PR-Groups are obtained and they include 6,906 app-
s in total. Figure 5 shows the distribution of the sizes of
PR-Groups. Over 98% of PR-Groups have sizes smaller
than 50. The average size of PR-Groups is 4.03, which is
small enough for manually checking if need. Among all of
our ground truth pairs, the repackaged app and the original
app fell into the same PR-Groups, meaning that the false
negative rate is 0.
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Figure 5: Distribution of the sizes of PR-Groups that are
produced by hierarchical clustering with cutoff value 0.1.

5.3 NNS-based Approach
We first build a k-d tree according to statistical features

and query nearest neighbors of each tree node for selecting
candidate app pairs. More precisely, we set the number of
neighbors (n) to 10. Then, we compare their structural fea-
tures and calculate their distance following Eqn.(5). Note
that wl and we can be adjusted to support different crite-
ria. For example, if wl > we, more emphasis is paid to
the layout features. Otherwise, the event handler features
may be regarded as more important. In our experiments,
wl = we = 0.5. The distance threshold θ was set to 0.15,
meaning that if the distance between two apps is smaller
than 0.15 they will be classified into the same PR-Group.

The total number of PR-Groups produced by NNS-based
approach is 2,070, including 20,867 apps. The average size
of PR-Groups is 9.9. Figure 6 illustrates the distribution
of the sizes of PR-Groups. Similar to the clustering-based
approach, most of PR-Groups (over 90%) are smaller than
50. However, there are several PR-Groups whose sizes are
larger than 500 and the largest size is 997. Only two pairs
of repackaged and original apps are not grouped into the
same PR-Groups, and therefore the false negative rate of
NNS-based approach is 1%.

5.4 Accuracy
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Figure 6: Distribution of the sizes of PR-Groups when
NNS-based approach is employed, with distance threshold
0.15.

Section 5.2 and Section 5.3 show that both clustering-
based approach and NNS-based approach can effectively de-
tect repackaged apps with very low false negative. To eval-
uate the false postive rate of our approaches, we random-
ly selected 100 groups from the PR-Groups produced by
clustering-based approach, and manually checked their re-
sources and smali codes. We also executed these apps in
Android emulator to check whether they have similar GUI
and functionality. We did the same thing to the PR-Groups
produced by NNS-based approach.

In the results of clustering-based approach, we found three
PR-Groups that contain false positives. So the false posi-
tive rate this approach is 3%. But not surprisingly, the sizes
of these three PR-Groups (i.e., 80, 84 and 127) are larger
than the average value. Our analysis reveals two major rea-
sons for these false positives. First, those apps have only a
few activities and their simple functionalities lead to simi-
lar statistical features and structural features. Second, apps
created by some online tools (e.g., App Makr5) may use
the same template, and therefore these apps have similar
appearance and event handlers. We discuss how to handle
them in Section 6.

In the results of NNS-based approach, we found 5 PR-
Groups containing false positives, and hence the false pos-
itive rate is 5%. Similar to the results of clustering-based
approach, these false positives were all found from groups
with large size (i.e., 520, 548, 641, 885 and 991). It shows
that NNS-based approach is not as accurate as clustering-
based approach. The reason may be that when querying
nearest neighbors, k-d tree (or other NNS algorithms) only
considers most similar ones “locally” whereas in clustering-
based approach each sample will be compared with others
(i.e., construct a global view). It demonstrates a tradeoff be-

5http://www.appmakr.com



tween efficiency and effectiveness. That is, clustering-based
approach suffers from high computational complexity but is
more accurate. In contrast, NNS-based approach is much
more efficient but less accurate.

5.5 Complexity
Since the time complexity of both spectral clustering and

hierarchical clustering are O(N3), the overall complexity of
clutering-based approach is O(N3). Although the compu-
tational cost of clustering-based approach is high, we may
leverage parallel computing to speed up the process. For
NNS-based approach, we sort feature vectors in lexicograph-
ical order before building k-d tree. This step can be ac-
complished within O(NlogN). Moreover, the complexity of
building k-d tree and that of querying nearest neighbors are
also O(NlogN). Therefore, the overall time complexity of
NNS-based solution is O(NlogN).

5.6 Code Obfuscation/App Hardening
We implement DexDumper to extract the original class-

es.dex from apps protected by typical hardening systems.
Therefore, attackers could not employ such hardening tech-
niques to evade ResDroid.

We also tested ResDroid’s ability to confront obfuscation
techniques. We first employed Proguard to obfuscate apps
from source codes. The results showed that both statistical
features and structural features were not affected. Then we
used SandMark6 to generate obfuscated code from bytecode.
However, since SandMark does not support Android’s dex
format, we converted dex files into jar files through dex2jar
and then fed jar files to SandMark. Unfortunately, although
SandMark provides 39 kinds of obfuscation methods, on-
ly three of them (static method bodies, method merger and
class encrypter) could successfully process these jar files. Af-
ter converting the obfuscated jar files back to dex through
dx, we found that static method boides and method merg-
er had no influence on ResDroid. However, ResDroid failed
to extract structural features when the jar was encrypted
by the class encrypter, and we propose possible solutions in
Section 6.

5.7 Observations
Apart from the ground truth, ResDroid identified 64 repack-

aged apps. We examined some of them manually and report
the observations.

5.7.1 App Plagiarism
We found that some plagiarizers repackaged apps and re-

published these apps as their own. For example, an app
(package name: com.bluedog1893.android.translate) has i-
dentical structural features with another app (package name:
com.dollars.translate). However, they have completely dif-
ferent icons. After manual examination, we found that the
former one contains most of the resources and the whole
codes from the latter one, but the string resources have
been converted from English to Chinese. Moreover, while
the original app does not have ads, the plagiarizer added ad
libraries to make profits.

5.7.2 Massively-produced Apps
We found a set of apps from the same developer having

the same structural features. Figure 7 shows three of them.

6http://sandmark.cs.arizona.edu

(a) App 1 (b) App 2 (c) App 3

Figure 7: Three apps have exactly the same layout

To create these apps, the developer just wrote the codes
once and then applied the same codes to different resources
for quickly producing “new” apps.

Another example comes from a PR-Group where the pack-
age names of all 83 apps follow the pattern: com.lvping.mobi
le.cityguide.*. These apps provide guidance for travellers,
and the last piece of their package names represents the c-
ity’s name. For example, the app with package name com.
lvping.mobile.cityguide.sydney236 offers a travelling guide
for Sydeny. However, these 83 apps were signed with two d-
ifferent certificates. Specifically, 4 of them are signed by the
certificate whose MD5 fingerprint is ’246DA3F3F52830A9E3
FD04111BA4C1D4’, while other 79 apps are signed by the
certificate whose MD5 is ’76439FA93B09D3FA51874769C74
486AB’. We examined the owners and issuers of the two cer-
tificates. The first one is “Android Debug” used for signing
debugging version of apps. The second one is the compa-
ny’s domain (i.e., lvping.com). We are not sure whether
the ones signed by the debugging certificate are repackaged
apps created by attackers or it is just because the developer
forgot to export release version and sign them using official
certificates.

5.7.3 Misusing Certificates
We found a pair of repackaged apps that have the same

package name (i.e., a5game.leidian2) but different certifi-
cate fingerprints. One was signed by ’EE1C7585428F65BAC
2D156B0792D2358’, and the other app was signed by ’86544
D775DCBA00275CD304C5C37BCC7’. We investigated the
two certificates and found the former is owned by “5agame.
com”, but the latter’s owner is in Chinese characters, which
is the name of the website http://www.5agame.com. After
careful examination of their codes, we did not find anything
abnormal. It is likely that both the two apps were actual-
ly published by the same developer “5agame.com”, but they
chose different certificates for the same app for some un-
known reasons. This may result in failures of updates, be-
cause the Android system does not allow the newer app and
the older one have different certificates. Therefore, it is an
example of misusing app certificates.

6. DISCUSSION

6.1 Attack Analysis
Zhang et al. described the behaviors of three kinds of

repackaging attacks [45], including (1) lazy attacks that use
automatic code obfuscation tools to repackage apps without
modifying the functionality of original apps; (2) malware
that embeds malicious payload into original apps without



changing them; (3) amateur attacks that may make some
changes to original apps besides employing the automatic
code obfuscation tools. Since none of them will modify the
resources and the related codes, ResDroid can detect them.

Advanced attackers who know ResDroid may change fea-
tures to evade detection. For example, they can insert many
junk resources into the repackaged app for affecting the sta-
tistical features. However, we consider the relations between
resources and codes (e.g., references from XML files, loading
from code) and identify core resources, from which statisti-
cal features are extracted. Therefore, junk resources that are
not carefully crafted will be filtered out. Dedicated attacker-
s may change statistical features by inserting resources and
altering the dex file simultaneously at a cost of increased ap-
p size and degraded performance. We may apply dead-code
detection techniques [12] to identify such junk functions and
remove them along with the corresponding resources when
computing the features.

As explained in Section 3.5, it is difficult for attackers to
re-implement a new layout while keeping the same looks and
feels. Moreover, to retain the normal functionality and QoE
of the repackaged app, attackers will not remove event han-
dlers. Although attackers can add new event handlers, they
cannotmodified the result of normalized LCS as explained in
Section 3.5.3. Therefore, the structural features are robust
and can raise the bar for attackers to evade detection.

6.2 Limitations and Future Work
We notice that apps created by automatic building tools

will cause false positives, because these tools provide devel-
opers a set of templates to create apps. Apps using the
same template will shared similar appearance and the event
handlers, therefore, their statistical features and structural
feature are alike. ResDroid cannot differentiate them. In
future work, we will use components’ attributes to differen-
tiate them. Another possible approach is to use code-level
detection systems such as DNADroid [19] to handle them.

If code obfuscation/app hardening systems employ vari-
ous dynamic loading techniques and encryption methods to
prevent static analysis, ResDroid may not be able to handle
such apps through static analysis. However, since these tech-
niques will eventually load codes and resources into memo-
ry, we will design a kernel-based dynamic approach like [42],
which keeps monitoring the behavior of a hardened app and
dumps selected codes and resources after they are loaded.
Moreover, we will examine how to fingerprint apps protect-
ed by different code obfuscation/app hardening systems.

7. RELATED WORK
Code clone detection. Considerable research has been
conducted on code clone detection [11, 39, 41]. Existing
approaches can be roughly classified into four groups [41]:
(1) textual analysis that extracts fingerprints from code di-
rectly; (2) lexical analysis that converts codes into lexical
tokens and then detects duplicated token sequences (e.g.,
CP-Miner [32], etc.); (3) syntactic analysis that first turn-
s codes into abstract syntax trees (AST) and then applies
tree matching or structural metrics to detect clones (e.g.,
Deckard [30], etc.); (4) semantic analysis that employs static
program analysis to extract more precise information about
the code, such as program dependency graph, for detection
(e.g., GPLAG [33], etc.). Some of these methods have been
used to detect repackaged apps by analyzing dex files, or the

converted Java class files, or the disassembled smali codes.
Repackaged apps detection. Assuming apps from the
official market are original, DroidMOSS applies fuzzy hash-
ing to each app’s opcodes and then compares it to original
apps’ fingerprint for detecting repackaged apps [47]. Similar-
ly, Androguard [1] uses several standard similarity metrics
to hash methods and basic blocks for comparison. Juxtapp
characterizes apps through k-grams of opcodes and feature
hashing and then clusters the corresponding bitvectors to
identify app clones [27]. PiggyApp was designed to detect
piggybacked apps, a special kind of repackaged apps, which
contain injected code [46]. It first decouples modules ac-
cording to their dependency relationship and then construc-
t fingerprint for the primary module by collecting various
features, such as requested permissions, Android API call-
s used, etc. [46]. These methods are vulnerable to simple
obfuscation techniques because they consider few semantic
information about codes [29,43,44].

Dresnos used normalized compression distance (NCD) [15]
to compare the similarity of apps according to their method
signatures, including external API used, exceptions, and
control flow graph (CFG) [22]. Potharaju et al. proposed
an approach to detect plagiarized apps according to symbol
tables and method-level AST fingerprints. This approach
can handle two kinds of obfuscation techniques that mangles
symbol table or inserts random methods with no function-
ality [37]. DroidSim utilizes component-based control flow
graph (CB-CFG) to quantify the similarity between app-
s [43]. DNADroid constructs a program dependency graph
(PDG) for eachmethod and then performs subgraph isomor-
phism comparison on PDGs after filtering out unnecessary
methods [19]. To speed up DNADroid, AnDarwin splits
PDGs into connected components (i.e., semantic blocks),
each of which will be represented by a semantic vector con-
taining the number of specific types. After that, it employs
locality sensitive hashing (LSH) to identify code clones that
have similar semantic vectors [20]. Chen et al. proposed a
novel approach that uses the centroid of control dependency
graph to measure the similarity between methods for detect-
ing cross-market app clones [13]. Although these methods
are better than the previous ones, they could still be easi-
ly evaded by obfuscation techniques (e.g., inserting dummy
codes or adding data related variables) [43,45].

Recently, Hao et al. showed that it is possible to detect
app clones using UI state transition graphs [28]. In a simul-
taneous research, Zhang et al. proposed ViewDroid that first
constructs feature view graph and then applies subgraph iso-
morphism algorithm to measure the similarity between two
apps [45]. Although both ViewDroid and ResDroid exploit
UI for detecting repackaged apps, there are three major dif-
ference between them. First, ViewDroid only uses the rela-
tionship among activities while ResDroid employs both the
layout of activities and the relationship among activities.
Moreover, we take into account Android’s fragment compo-
nent that provides similar functionality as an activity. How-
ever, ViewDroid does not handle such component. Second,
by only examining core resources, ResDroid would be more
efficient and more robust to third-party libraries than View-
Droid that considers all views. Third, whereas ViewDroid
targets on comparison between a pair of apps, ResDroid is
built on top of a two-stage methodology and equipped with
two kinds of algorithms.



8. CONCLUSION
We propose a novel approach that leverages new features

extracted from core resources and codes to detect repack-
aged apps. These features do not require processing all op-
codes and are resilient to code obfuscation/app hardening
techniques. To speed up the detection, we adopt the divide-
and-conquer strategy to reduce the comparison and support
parallel processing. Our solution have been realized in Res-
Droid and the extensive evaluation using real repackaged
apps has demonstrated its effectiveness and efficiency.
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