
 

Accepted Manuscript

Modeling infrastructure interdependencies by integrating network and
fuzzy set theory

C.Y. LAM , K. TAI

PII: S1874-5482(17)30040-9
DOI: 10.1016/j.ijcip.2018.05.005
Reference: IJCIP 251

To appear in: International Journal of Critical Infrastructure Protection

Received date: 14 March 2017
Revised date: 7 November 2017
Accepted date: 21 May 2018

Please cite this article as: C.Y. LAM , K. TAI , Modeling infrastructure interdependencies by integrating
network and fuzzy set theory, International Journal of Critical Infrastructure Protection (2018), doi:
10.1016/j.ijcip.2018.05.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.ijcip.2018.05.005
https://doi.org/10.1016/j.ijcip.2018.05.005


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

1 
 

Modeling infrastructure interdependencies by integrating network and 

fuzzy set theory 

C.Y. LAM* 

Graduate School of Engineering, Hiroshima University, Hiroshima, 739-8527, Japan 

K. TAI 

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639-798, Singapore 

======================================================================================== 

ABSTRACT 

Infrastructure interdependency refers to the bidirectional relationship between entities, and means that the 

state of one entity is influenced by or correlated to the state of the other. Although some interdependencies 

in infrastructure networks can be modeled deterministically, often the required data are incomplete or there 

is an element of randomness in the relationships, necessitating the use of stochastic models. In this paper, 

the concepts and techniques of network and fuzzy set theory are integrated, and a fuzzy modeling approach 

is proposed to better identify and understand interdependencies and the relationships and connections 

between entities in infrastructure networks. This approach will allow the topological structures and 

characteristics of the network to be better understood for further evaluation and analysis. 

Keywords: Infrastructure Network, Network Interdependency, Network Theory 

======================================================================================== 

 

1. Introduction  

An infrastructure network consists of the groups of interrelated entities that are essential to prosperity, 

security and life in society [14, 15]. Examples of infrastructure networks include power or energy generation 

networks, water supply networks, gas or oil supply networks, and logistics and supply chain networks. In 

these networks, entities are often highly interconnected and mutually dependent in complex ways. As such, 

a disruption to one entity can have a cascade effect to entities resulting in disruption to the entire network. 

For example, water supply networks generally include the entities of water storage facilities (e.g. reservoirs, 

water tanks, and water towers), water purification facilities (e.g. water and purification plants), and water 

pressurizing components (e.g. pumping stations and pumping gates). These entities are connected by water 

pipes, sewers, etc., so that the untreated water can be processed and then distributed to the consumers 

(which may be residential households or industrial or commercial establishments) as well as other usage 

points (such as fire hydrants). These entities in the water supply network are also related to other entities in 

other networks, such as the water pressurizing components which may be connected to entities in a power 

supply network, as they can assist in electricity generation. Similarly, the water supply network requires 

electricity to power it’s facilities, so the water supply network also depends on the entities in the power 

supply network. Therefore, if a disruption occurs in one of the entities in the power supply network, this 

disruption may also affect the entities in the water supply network or even other infrastructure networks. 

Models for these bidirectional relationships, or interdependencies, between entities have been considered 

in previous studies [28, 32]. As shown in Table 1, interdependencies can be classified according to the 
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interactions, relationships, characteristics or effects between different types of entities or groups of entities 

in a network, and disruptive cascade effects and their magnitudes can also be anticipated based on the types 

of interdependencies between entities.  

 

Table 1. Interdependency types [28, 32]. 

Interdependency Type Description 

Physical Physical reliance on material flow from one infrastructure to another. 
Cyber Reliance on information transfer between infrastructures. 
Geographic Local environmental event affects components across multiple infrastructures 

due to physical proximity. 
Logical Dependency that exists between infrastructures that does not fall into one of 

the above categories. 
Policy/ Procedural Dependency that exists due to policies or procedures that relate the state of a 

component to a subsequent effect. 
Societal Influence that an infrastructure component event may have on societal factors. 

 

Efforts have been made to model the different types of infrastructure interdependencies, based on the type 

of dependency and whether or not it is symmetric. For example, studies have considered models for physical 

interdependencies [8, 11, 16, 18, 23, 38, 39, 42, 43]; models for multiple-interdependencies, such as for 

physical and cyber interdependencies [5, 6, 10, 29, 30, 36], physical and geographic interdependencies [13, 

31], physical, logical and societal interdependencies [17], physical, cyber and societal interdependencies [21, 

34], and physical, cyber and geographical interdependencies [37].  

Various approaches can be found in the literature for modeling these infrastructure interdependencies. For 

example, Hadjsaid et al. [10] adopt a cause and effect approach to model the relationships between power 

grids and information/communication systems in power and telecommunication networks. Svendsen and 

Wolthusen [36] use a scalable multigraph-based model with buffered resources to study the 

interdependencies among electric power, telecommunication and gas supply networks. Similarly, Wang et al. 

[39] apply a network model to analyze the interdependent responses under three types of edge disturbance 

strategies, and give a method for ranking critical components in the network. Beyeler et al. [3] use system 

dynamics models to identify chains of interdependencies arising from pervasive interconnections, which 

might create unexpected vulnerabilities or resilience. Most studies apply either analytical approaches to 

explicitly model infrastructure interdependencies [5, 7, 13, 16, 30, 34]; or use computer simulation 

techniques to simulate the infrastructure interdependencies under different situations for inference and 

prediction [3, 4, 10, 23, 37, 42]. 

 

1.1. Motivation  

In the above literature, the majority of studies focus on models and maps for explicit interdependencies, e.g. 

physical and cyber interdependency. On the contrary, relatively few studies consider models of 

infrastructure interdependencies that may or may not exist. For example, the existence of physical 

interdependency can easily be verified by the existence or not of a physical linkage between infrastructures; 

however, the existence of a logical interdependency, policy/procedural interdependency, societal 

interdependency, etc., may be difficult to model and represent as such dependencies are difficult to identify 

and quantify. Moreover, the existence of some types of interdependency may be subjective depending on 

the views of different people or groups of people. The uncertainties in these interdependencies also arise 
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from incomplete/inaccurate interpretation about the states or the randomness in the type of 

interdependency. 

Insufficient data may also lead to uncertainties in the modeling of the infrastructure interdependencies. 

Access to the necessary data is often difficult because the vast majority of infrastructure is owned by the 

private sector and there are significant barriers to sharing information with the public sector [33]. 

Furthermore, experts from a particular sector may only be able to identify the interdependencies within that 

sector, and may lack the expertise to identify dependencies with other types of infrastructure.  

Thus, a major challenge is to model and identify both the deterministic and stochastic interdependencies 

between different sectors, so as to encapsulate the topological structure of infrastructure networks for 

further analysis and evaluation and for disruption prevention, protection and recovery; and also for the 

development of more resilient infrastructure networks. 

 

1.2. Contributions 

To model complex network interdependencies, some studies consider a fuzzy modeling approach. For 

example, Stergiopoulos et al. [35] approximate the time evolution of a cascading failure using fuzzy 

approximations of impact evolution; Oliva et al. [26] adopt fuzzy measures to develop criticality indices to 

rank the physical interdependencies in an infrastructure network; Yazdani et al. [41] adopt a fuzzy multi 

criteria decision-making technique to determine the weights and the importance of alternatives with respect 

to infrastructure interdependencies; Akgun et al. [1] present a fuzzy cognitive map methodology to 

determine the vulnerabilities of interdependent infrastructures under multiple criteria; and Muller [20] 

presents a fuzzy modeling method to forecast the impacts of a disruptive event and the resilience of an 

infrastructure network. 

This paper presents an extension of the fuzzy modeling approach. Previous studies assume that the 

interdependencies in a network are known in advance, and are not able to fully reproduce phenomena such 

as cascades. A fuzzy modeling approach can be applied either to assess the performance of the explicit 

interdependencies so as to reduce the ambiguity of available alternatives [1, 12, 26, 27, 41] or to forecast 

the disruption due to cascades [20, 25, 34, 35]. 

The approach proposed in this paper integrates network and fuzzy set theory to model not only the explicit 

or physical interdependencies, but also to model and investigate uncertain or hidden (non-physical) 

interdependencies. The proposed approach can retrospectively describe and reveal these uncertain or 

hidden (non-physical) interdependencies, helping decision makers to anticipate and prevent potential 

disruption events and cascade effects, by modeling the infrastructure interdependencies (both the explicit 

and uncertain interdependencies) with nodes. 

The proposed modeling approach can also infer the topology of infrastructure networks from disruptions. 

This means that disruption prevention strategies or recovery planning of infrastructure networks can be 

designed based on the simulated disruption events. In the proposed approach, the network topology can be 

varied to maximize resilience against disruption from both explicit and hidden dependencies.  

The proposed modeling approach provides topological insight to represent infrastructure interdependencies 

as well as an appropriate approach to handle the uncertainties of these interdependencies under situations 

that are crisp and non-deterministic, and cannot be described precisely or if the complete description of the 

situations requires more data. The proposed fuzzy modeling approach is then able to identify and model the 

significant interdependencies that exist in an infrastructure network by considering the connectivity and 

relationships of the entities in the network. 
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This paper provides new insight and a methodology for the identification of infrastructure interdependencies 

and the modeling of infrastructure interdependencies under the cascade effect, in which both the explicit 

and uncertain interdependencies can be modeled simultaneously.  

 

2. Fuzzy Modeling Approach for Infrastructure Interdependency 

In this paper, a fuzzy modeling approach is proposed for the inference of infrastructure interdependencies. 

The proposed approach integrates network theory and fuzzy set theory to model interdependencies. 

Network theory is adopted to build the network, and fuzzy set theory is adopted to determine the degree of 

interdependency between the connected infrastructures in the network. The fuzzy concepts and techniques 

provide an appropriate approach for situations that are too complex to model deterministically [44]. Unlike 

existing approaches [1, 12, 20, 25, 26, 27, 34, 35, 41], the proposed integrated approach also considers 

situations in which one entity may have multiple connections with other entities, and thus can identify 

potential interdependency between infrastructures as well as the importance of the interdependency.  

The proposed approach first assumes that the network is a complete graph network, and that every entity is 

connected to every other entity in the network, such that every pair of entities is connected by a unique link. 

Then, the complete graph for the infrastructure network with   entities is denoted by   , where    has 
 (   )

 
 links with its own maximal cliques. In the integration of fuzzy set theory with the complete graph for 

an infrastructure network, it is assumed that    has a set of infrastructures, and each of these 

infrastructures has a relationship with other infrastructures via a link     for         . The link     denotes 

that infrastructure    is dependent on    and infrastructure    is dependent upon   , and the link may be 

reflexive in some situations, i.e.        . Therefore, an infrastructure network    can be represented by a 

set of nodes (infrastructures) and links,    *   +, where   {               } is the set of nodes 

(infrastructures) in the network   , and   {               } is the set of interdependencies over the links 

in the network. From the modeling of the fuzzy variables, the degree of the nodes and the interdependency 

over a link can be easily associated with the corresponding nodes in the network. Moreover, the fuzziness of 

the interdependency between the corresponding nodes can also be identified by fuzzy set theory. The 

relationships between the fuzzy variables are illustrated in Fig. 1. 

node
n1

node
n2

node
n3

node
n4

link = l12

link = l34

link = l24link = l13

interdependency over a link

Infrastructure Network k4 = {N.L}link = l14 

link = l23 

node/ infrastructure

where N = {n1, n2, n3, n4} and 

                     L = {l12, l13, l14, l23, l24, l34}

 

Figure 1. Relationships between the fuzzy variables. 

Since the existence of interdependencies are not always known in advance, the linguistic variables of fuzzy 

set theory are proposed to minimize the effect of noisy data. Here, let   be a set of linguistic variables that 

corresponds to  , and the set of linguistic variables                  has the same properties as  . 

Furthermore, each of the linguistic terms in the set is characterized by a fuzzy set     with membership 

function     
, so the value of the linguistics variable     is represented as    (   ) with the degree of 
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membership denoted as     
(   ). This representation of networks as nodes is useful because a node can 

have more than one interdependency with other nodes in a network, including stochastic interdependencies.  

 

2.1. Formulating the interdependencies 

In infrastructure networks, it is assumed that interdependencies are formed among the infrastructures as 

nodes, and each node is assumed to be connected with all other nodes in the infrastructure network, such 

that each node should have at least one connection to another node in the network, i.e. if    depends on 

another   , for          and      , it is then expected that an interdependency is formed between    

and   , and the degree of occurrence of the interdependency can then be modeled by fuzzy set theory. In 

fuzzy dependency, the fuzzy connection between    and   ,    (   ) , is the fuzzy interdependency between 

   and    in terms of     . This fuzzy interdependency refers to the first order interdependency between a 

pair of nodes; a primary and single interdependency with another node in the infrastructure network. Then 

the degree  .   (   )/ of the occurrences of the fuzzy interdependency for the nodes in the infrastructure 

network is defined as 

 .   (   )/  ∑    (   
(  )    

(  ))
 
   .        (1) 

Since the link     can be a directional or unidirectional interdependency between node    and node   , a 

minimization function is applied in Equation (1) to avoid the duplication of membership functions for the 

fuzzy interdependencies. To determine the significance of the fuzzy interdependency, the degree of the 

occurrences of the fuzzy interdependency  .   (   )/ is compared to the expected occurrences of the fuzzy 

interdependency  .   (   )/ based on the assumption that each node is connected with all other nodes in 

the infrastructure network. Then according to the standardized residual approach [9], the scaled difference 

is determined as 

      
 .   (   )/  .   (   )/  

√ .   (   )   (  )/

,           (2) 

where  .   (   )/  ∑    
(  )

| |
    ∑    

(  )
| |
    ∑ ∑    (   

(  )    
(  ))

| |
   

| |
   .   (3) 

The standardized residual approach measures the distance between the degree of the occurrences and the 

expected occurrence of the fuzzy interdependency. The expected occurrences of the fuzzy 

interdependency refers to the possible number of interdependencies in an infrastructure network, which 

means the maximum number of edges that a node can have in order to form interdependencies with other 

nodes, i.e. the unions of the sets of the nodes with interdependencies in the network. The minimization 

function is also applied in the determination of the expected occurrences of the fuzzy interdependency to 

avoid the duplication of the membership functions of the fuzzy interdependencies. 

The standardized residual approach approximates a standard normal distribution; however, the number of 

infrastructure interdependencies may not follow a normal distribution, so an adjustment [2, 40] is applied to 

the standardized residual       to give the adjusted residual      ,  

      
     

√     
 ,            (4) 

where       is the maximum estimation for the asymptotic variance [9], and is defined as 
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      .  ∑    
(  )

| |
   /  .  ∑    

(  )
| |
   /.        (5) 

The maximum estimation for the asymptotic variance is used to derive an approximate probability 

distribution for the membership function of the fuzzy interdependencies that is asymptotically normal. 

Therefore, from the adjusted residual      , the fuzzy interdependency    (   ) is significant when the value 

of       is within the 95% confidence level, meaning that    is dependent on   . 

Since a node can have multiple interdependencies or connections with other nodes in a network, the fuzzy 

interdependency can be characterized by more than one fuzzy term. Multiple interdependencies are also 

called higher order interdependencies (e.g. second order interdependency, third order interdependency) of 

a node. Thus, the nth order interdependencies are constructed from the lower order (   )   

interdependencies of a node. For example, the second-order interdependency is based on the first-order 

interdependency of node    with its two dependent nodes    and node   , i.e., the fuzzy interdependencies 

   (   )  and    (   ) . Similarly, the third-order interdependency is based on the second-order 

interdependency of node    with its three dependent nodes   ,    and   , and the fuzzy interdependencies 

   (   ),    (   ) and    (   ). By iteratively determining the orders of the fuzzy interdependencies, the 

significance of the interdependencies of the nodes in the infrastructure networks can then be modeled. 

 

2.2. Weighting the fuzzy interdependencies 

The existence, or exact nature of infrastructure interdependencies are not necessarily known in advance, so 

the uncertainty associated with    (   ) is defined probabilistically as  .   (   )| (   )(   )( (   )(   ))/. 

Therefore, to predict    (   ), a weight of evidence measure,  .   (   )/ [24], is adopted to define the 

mutual information for the set of fuzzy interdependencies, 

 .   (   )/      
 .   (   )| (   )(   )( (   )(   ))/

  .   (   )/
    

 ( 
   

. 
   

/| (   )(   )( (   )(   )))

  .   (   )/
,   (6) 

where  .   (   )| (   )(   )( (   )(   ))/ is the probability of the fuzzy interdependency between    and 

  , i.e.    (   ) given  (   )(   )( (   )(   ))  and  .    (    )| (   )(   )( (   )(   ))/ is the probability of 

the fuzzy interdependency between    and nodes other than   , i.e.     (    )  given by 

 (   )(   )( (   )(   )). These conditional probabilities are applied to determine the probability of a fuzzy 

interdependency existing between nodes. Therefore, the weight of evidence measure  .   (   )/ 

measures the significance of the fuzzy interdependency between    and its dependent nodes, i.e. for 

accepting or rejecting the existence of    (   ). Therefore, the triangular fuzzy numbers,    for representing 

the pair-wise weightings and the interdependency are defined as the set   *(     )    +, where 

          and     is a continuous mapping from   to the closed interval ,   -. Moreover, the states 

of the interdependency are defined as “highly interdependent (U)”, “averagely interdependent (M)”, and 

“low interdependent (L)” as shown in Fig. 2. Then, a triangular fuzzy number denoted as  ̃  (     ) for 

      under the triangular-type membership function is defined as follows: 

  ̃( )  {

 
(   ) (   )⁄
(   ) (   )⁄

 

 

              
         
         
               

 .        (7) 
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Figure 2. Membership functions. 

The fuzzy interdependency between    and    is shown in Fig. 2, where      and      are the maximum 

and minimum values for an interdependency to be formed between the nodes in the network, and     

(   ) represents the threshold for the lower (upper) tercile of the measurements. Following Mitra and 

Acharya [19],     and     are determined by dividing the region into intervals of equal width ( ), and then 

obtaining the corresponding class frequencies, so the position of the  -th partition is defined as 

         
        

  
  ,           (8) 

where      is the lower limit of the  -th class interval,    is the rank of the  -th partition value, and       is 

the cumulative frequency of the immediately preceding class interval such that             . Therefore, 

the values of    ,     and     in the membership function are     
        

 
,     

       

 
, and 

    
        

 
. Then, the degree of membership for the states of the interdependency can be represented 

as 

  (  )  {

 
      

       

 

              

                 

                         

,         (9) 

  (  )  

{
 
 

 
  

      

       

      

       

 

                 

                  

                 

                 

,         (10) 

  (  )  {

 
      

       

 

              

                 

                         

.         (11) 

Therefore, the above proposed fuzzy modeling approach can be used to model the infrastructure 

interdependencies that are not explicitly connecting nodes, or the interdependencies that are not 

completely deterministic in the infrastructure network. 

 

3. Examples 

𝑉𝑖  𝑉𝑖  

𝐿 

𝐾𝑚𝑖𝑛 𝐾𝑚𝑎𝑥 𝑀𝑖  𝑀𝑖  𝑀𝑖  

𝜇 

𝑀 𝑈 
  

  𝑓
𝑢
𝑧𝑧
𝑦
 𝑀
𝑒𝑚

𝑏
𝑒𝑟
𝑠 
𝑖𝑝

 

𝐾 𝑣𝑎𝑙𝑢𝑒 
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This section presents illustrative examples of the proposed fuzzy modeling approach for modeling 

infrastructure interdependency and developing a more resilient infrastructure network. 

 

3.1. Modeling the infrastructure interdependencies with nodes 

An example of a complete graph,     for a network consisting of 7 infrastructures with 7 nodes and 21 links is 

illustrated in Fig. 3. Among the 21 links, some interdependencies may be explicit links to other nodes while 

other interdependencies may be implicit or stochastic links. The computed values for the adjusted residuals 

and weights for the fuzzy interdependencies    (   )      (   )      (   ) in the complete graph    are 

presented in Tables 2 and 3, respectively. The topology of the infrastructure network with the degree of 

occurrence of the fuzzy interdependencies is shown in Fig. 4.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Complete graph    with the maximum expected occurrences of infrastructure interdependency. 

 

Table 2. Values of the adjusted residuals (asymptotic variance = 1) for the fuzzy interdependencies.  

  Adjusted Residuals 

To 
From 

                     

   - 0.88 1.00 0.14 0.14 0.14 0.14 
   0.88 - 1.00 0.22 0.85 0.28 0.14 
   1.00 1.00 - 1.00 0.33 0.33 0.28 
   0.14 0.22 1.00 - 1.00 0.83 0.28 
   0.14 0.85 0.33 1.00 - 1.00 0.91 
   0.14 0.28 0.33 0.83 1.00 - 1.00 
   0.14 0.14 0.28 0.28 0.91 1.00 - 
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𝑙   
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Table 3. Weights of the expected occurrences of the fuzzy interdependencies.  

 Expected Occurrence 

To 
From 

                     

   - 0.77 1 0.02 0.02 0.02 0.02 
   0.77 - 1 0.05 0.72 0.08 0.02 
   1 1 - 1 0.11 0.11 0.08 
   0.02 0.05 1 - 1 0.69 0.08 
   0.02 0.72 0.11 1 - 1 0.82 
   0.02 0.08 0.11 0.69 1 - 1 
   0.02 0.02 0.08 0.08 0.82 1 - 

 

 

 

 

 

 

 

Figure 4. Topological structure of an infrastructure network with identified interdependencies. 

According to the proposed fuzzy modeling approach, the network in Fig. 4 has 10 significant 

interdependencies among the infrastructures, in which the degrees of the occurrences of the 

interdependencies are less than the expected occurrences of the interdependencies as shown in the 

corresponding complete graph    in Fig. 3. The proposed approach thus can be used to help model the 

interdependencies between entities in a network, by revealing previously unknown relationships between 

entities. 

 

3.2. Modeling the infrastructure interdependencies from a disruption 

The proposed approach can also be used to model the infrastructure interdependencies from a disruption, 

i.e. the interdependencies induced by the cascade effect of a disruption. The proposed approach is 

illustrated with simulated data from McDaniels et al. [16]. The data used in [16] are intended for the 

development of a framework to characterize infrastructure failure interdependencies in infrastructure 

networks, in which the sources of data and information include news in printed media sources and technical 

reports prepared by the responsible agencies.  

Here, we extend the results of McDaniels et al. [16] to consider the cascade effect from a power network 

disruption to other sectors, such as agriculture and food production, banking and finance, communication 

and information technology, drinking water and treatment plants, military installations and defense, health 

care and civil services, transportation systems, and commercial and industrial services. The data used in this 

illustrative example are obtained according to the approach proposed by Nojoma and Kameda [22] for 

interactions stemming from a specific extreme event. The data used in this illustrative example came from 

𝑙   

𝑙   

𝑙   

𝑙   

𝑙   𝑙   

𝑙   
𝑙   

𝑙   

𝑙    infrastructure interdependency 
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similar sources to those used in Nojoma and Kameda [22], including media reports and the official reports 

from responsible agencies. Then, to model the infrastructure interdependencies between the disruption 

event and the eight interrelated sectors listed above, the complete graph    with 9 nodes and 36 links is 

shown in Fig. 5, and the estimated adjusted residuals and weights for the fuzzy interdependencies 

   (   )      (   )      (   ) are presented in Tables 4 and 5, respectively.  

 

 

 

 

 

 

 

 

 

 

Figure 5. Maximum expected occurrences of the infrastructure interdependencies from a disruption. 

Table 4. Values of the adjusted residual for the interdependencies. 

Adjusted Residuals 

To 
From 

                           

   - 0.75 0.83 0.87 0.72 0.71 0.78 0.88 0.87 
   0.75 - 0.14 0.14 0.36 0.69 0.46 0.79 0.78 
   0.83 0.14 - 0.91 0.17 0.88 0.35 0.47 0.83 
   0.87 0.14 0.91 - 0.22 0.91 0.65 0.76 0.81 
   0.72 0.36 0.17 0.22 - 0.69 0.46 0.44 0.41 
   0.71 0.69 0.88 0.91 0.69 - 0.65 0.78 0.72 
   0.78 0.46 0.35 0.65 0.46 0.65 - 0.46 0.33 
   0.88 0.79 0.47 0.76 0.44 0.78 0.46 - 0.78 
   0.87 0.78 0.83 0.81 0.41 0.72 0.33 0.78 - 

 

Table 5. Values of the expected occurrences of the fuzzy interdependencies.  

Expected Occurrence of the Fuzzy Interdependency 

To 
From 

                           

   - 0.56 0.69 0.76 0.52 0.51 0.61 0.77 0.75 
   0.56 - 0.02 0.02 0.13 0.48 0.21 0.62 0.61 
   0.69 0.02 - 0.82 0.03 0.77 0.12 0.22 0.69 
   0.76 0.02 0.82 - 0.05 0.82 0.42 0.58 0.66 
   0.52 0.13 0.03 0.05 - 0.48 0.21 0.19 0.17 
   0.51 0.48 0.77 0.82 0.48 - 0.42 0.61 0.52 
   0.61 0.21 0.12 0.42 0.21 0.42 - 0.21 0.11 
   0.77 0.62 0.22 0.58 0.19 0.61 0.21 - 0.61 
   0.75 0.61 0.69 0.66 0.17 0.52 0.11 0.61 - 

0: A Disruption 

1: Agriculture and food production 

2: Banking and finance 

3: Communication and information technology 

4: Drinking water and treatment plants 

5: Military installations and defense 

6: Health care and civil services 

7: Transportation systems 

8: Commercial and industrial services 

……….. expected infrastructure interdependency 
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The computed values of the degree of occurrence of the fuzzy interdependencies are shown in Figs. 6 and 7. 

A total of 23 significant infrastructure interdependencies can be found between the disruption event (node 

  ) and the 8 identified areas (node    to node   ). The 23 significant infrastructure interdependencies show 

the cascade effect of a disruption. 

 

 

 

 

 

 

 

 

 

 

Figure 6. Topological structure with the identified interdependencies from a disruption. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Topological structure with identified interdependencies resulting from a power network disruption. 

Comparing the results in Fig. 7 in this paper with Fig. 8 in McDaniels et al. [16] (which considers the 

infrastructure failure interdependencies and the consequences for the 2003 northeast blackout), the 

proposed fuzzy modeling approach can produce very similar results for modeling the infrastructure 

0: A Disruption 

1: Agriculture and food production 

2: Banking and finance 

3: Communication and information technology 

4: Drinking water and treatment plants 

5: Military installations and defense 

6: Health care and civil services 

7: Transportation systems 

8: Commercial and industrial services 
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interdependencies from a power network disruption. As shown in Table 6, the proposed approach also 

covers food supply, finance, telecommunications, utilities, etc., as in the work of McDaniels et al. [16]. 

Moreover, besides modeling the infrastructure interdependencies from a disruption, the proposed approach 

can also help to identify previously unknown interdependencies. This is useful for increasing network 

resilience. 
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Figure 8. Infrastructure failure interdependencies and their consequences for the 2003 northeast blackout 

(McDaniels et al. [16]). 

 

Table 6. Comparison between the identified interdependencies in a power network disruption event. 
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4. Conclusion 

In this paper, a fuzzy modeling approach was proposed to integrate network and fuzzy set theory to model 

infrastructure interdependency. Network theory provides topological insight to help represent the 

infrastructure interdependencies, while fuzzy set theory provides a suitable approach to handle 
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uncertainties in infrastructure interdependencies under situations that are crisp and non-deterministic. The 

proposed fuzzy modeling approach can be used to determine which interdependencies are statistically 

significantly, and to model these interdependencies in an infrastructure network by considering the 

connectivity and relationships of the entities in the network. 

Some interdependencies in a network may not be identifiable until a disruption occurs. However, these 

independencies may have potential implications for the network in terms of the resilience, robustness, or 

industrial/commercial values. The proposed approach can also be applied to model these interdependencies 

between entities by simulating the effects of a disruption. The cascade effect from a disruption in a network 

can be difficult to model deterministically, but the proposed approach can help to reveal the 

interdependencies arising from the cascade effect. The modeled interdependencies and connections 

between the entities that are obtained with the proposed approach (e.g. the order of interdependency and 

the number of paths between a pair of entities) may also be used to further analyze and evaluate the 

topological structures of the network as well as the resilience of the network. Therefore, the proposed fuzzy 

modeling approach may help to better infer and reveal the interdependencies in infrastructure networks, 

and assist in reconstructing networks and increasing their resilience. An area for future work is how to model 

and consider directed and multiple interdependencies between infrastructures. Additionally, the space, 

distance or capacity should be considered in the modeling of infrastructure interdependencies. By having a 

more detailed representation of the topology of an infrastructure network, further analysis and evaluation 

on how the network is influenced by an entity or clusters of entities can be conducted, allowing more 

resilient infrastructures to be developed. 
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