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Abstract 

The emergency supply of blood in natural and anthropogenic disasters has proved challenging. 

This article presents a stochastic bi-objective supply chain design model for the efficient (cost 

minimizing) and effective (delivery time minimizing) supply of blood in disasters. The blood 

supply network under investigation is comprised of blood donors, mobile blood facilities, local 

and regional blood centers, and demand points. A hybrid solution approach, combining the ɛ-

constraint and Lagrangian relaxation methods, is developed to solve the proposed model. Our 

numerical experiments and subsequent discussions focus on (1) investigating the utility of the 

proposed model in solving different size problems, (2) exploring possible tradeoffs between 

supply chain cost and delivery time, (3) identifying the areas along the supply chain where 

investments can be made to improve supply chain efficiency and effectiveness, and (4) 

performance benchmarking of the proposed stochastic programming approach. 

Keyword: Humanitarian aid supply chain; Disaster relief operations; Blood supply; Supply chain 

design; Stochastic; ɛ-constraint method; Lagrangian relaxation method. 

 

1. Introduction 

On 26 December 2003, a 6.6 ML earthquake devastated the historical city of Bam in southeastern 

Iran. Over 30,000 people were killed, 30,000 injured, and 85% of buildings destroyed or severely 

damaged (Eshghi and Zare, 2003; USGS, 2003). The disaster caused serious infrastructure 

damage, and disrupted land transportation and utility supply systems. All health facilities in the 

area were destroyed with over 50% of health personnel reported killed or missing. Overburdened 

with the influx of injured people, many hospitals around the country called for urgent supply of 

blood units for emergency surgical needs. Yet, from over 100,000 donated blood units, only 

about 21,000 units were actually received and utilized by these hospitals (Abolghasemi et al., 

2008). The Bam experience revealed the scale and significance of the required relief effort, and 

in particular the management of blood supply, in the aftermath of disasters. Since 2003 Bam 

earthquake, the world has witnessed several other natural disasters such as 2004 Indian Ocean 
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earthquake and tsunami, the 2008 China earthquake, the 2010 Haiti earthquake, the 2011 Japan 

earthquake and tsunami, the 2013 Philippines storms, and the 2013 Pakistan earthquake, 

reinforcing similar relief distribution implications. 

Apart from these natural disasters, anthropogenic catastrophes have also caused unexpected 

deaths and injuries. Numerous examples of anthropogenic disasters exist, such as the September 

11 attacks in the U.S., the 2008 Mumbai attacks, and the 2013 Boston Marathon bombings. On 

these occasions, many injured victims are in urgent need of blood products. While the lack of 

blood and blood donors has barely been a problem in such mass casualty events, ineffective 

distribution and untimely supply of blood to hospitals could wreak havoc (Gerberding et al., 

2007). In the two months following the September 11 attacks, the blood collected was reported 

to be double the normal rate, but a large portion was never utilized due to limits in effectively 

storing and distributing the donated blood (Congress House Committee on Energy and 

Commerce, 2002). Similarly, the 1998 terrorist attack in Nairobi revealed blood supply 

deficiencies in Kenya (PEPFAR, 2006). 

The aforementioned examples indicate the need for blood supply chain solutions that enable 

hospitals and medical system infrastructures to respond more effectively to mass casualty events 

(Gerberding et al., 2007; Williamson and Devine, 2013). Sri Lanka’s nationally coordinated 

blood distribution network has been able to utilize its available blood resources through effective 

communication and transportation between facilities and mobilization of its available 

bloodstocks (Kuruppu, 2010). However, even the more developed countries have shown to be 

unprepared for major disasters due to inadequate infrastructures (Starr and Van Wassenhove, 

2014). 

One primary issue in disaster relief modeling efforts, including blood supply chain modeling, is 

the extremely uncertain and dynamic decision environment (Mete and Zabinsky, 2010; Starr and 

Van Wassenhove, 2014). In addition, there is a need to incorporate multiple performance 

measurement and management objectives in addition to the classical financial objectives. Several 

studies have dealt with designing the right objective functions when it comes to the delivery of 

relief supplies in disasters (Gralla et al., 2014). Yet, the design of objective functions and 

constraints has been debated for many years (Starr and Van Wassenhove, 2014). 
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In this paper, we present a stochastic bi-objective supply chain design model for the timely and 

efficient supply of blood in disasters. The “time” element addresses the urgent need for blood 

supply, whereas “efficiency” concerns minimization of operational costs. We study a realistic 

and relatively complex blood supply network, the chains of which include blood donors, mobile 

blood facilities (such as blood donation vehicles), local blood centers, regional blood centers, and 

hospitals. A hybrid solution approach combining the ɛ-constraint and Lagrangian relaxation 

methods is developed to solve the bi-objective model. The performance of the proposed model 

and solution method is then investigated in a number of numerical experiments and the results 

are discussed in detail. 

 

2. Literature Review 

The challenge of getting supplies and services to the affected people in disasters falls within the 

scope of humanitarian aid supply chain management (Wassenhove, 2006). Often treated as a 

subset of humanitarian aid supply chains, disaster relief operations involve the emergency 

delivery of food and medical supplies to injured victims immediately after a disaster occurs. 

Many humanitarian supply chains often operate on some advanced warning (and sometimes on a 

permanent ongoing activity, like food bank supply chains). Disaster relief operations by contrast 

rely on the existing infrastructure for fast delivery of emergency products and services with no or 

little prior notice (Whybark et al., 2010). This being said, a high degree of uncertainty and short 

lead-times are the primary characteristic of disaster relief supply chains. 

Modeling efforts, mainly optimization and simulation models, have tried to address some of the 

disaster relief supply chain challenges (see for example Gralla et al. (2014); Özdamar and Demir 

(2012); Sheu (2007, 2010)). Caunhye et al. (2012) classify the published emergency logistics 

optimization models into ‘facility location’ and ‘relief distribution and casualty transportation’ 

models. They also provide additional classifications under each of these two main categories. 

Cost minimization and evacuation time minimization are identified as the predominant objective 

functions in facility location models (which also define the scope of the current study). The latter 

include ‘location-evacuation models’ and ‘location models with relief distribution and stock pre-
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positioning’. None of the reviewed papers falls within the scope of emergency blood supply in 

disasters. 

A generic review of blood inventory and supply chain management studies was completed by 

Beliën and Forcé (2012) focusing on different types of blood products, planning levels, and 

solution methods. Modeling efforts that focus on strategic design of blood supply networks are 

scarce. Daskin et al. (2002) and Shen et al. (2003) present nonlinear integer programing models 

for a single-period joint location-inventory blood supply problem. The models aim to 

simultaneously determine the number and location of distribution centers and the inventory 

levels at each center. Heuristic solution methods are developed to solve the proposed models. 

Şahin et al. (2007) develop a single-period location-allocation model for regionalization of blood 

services in a hierarchical network consisting of regional blood centers, blood stations, and 

mobile facilities. A location-allocation and scheduling model for the supply of emergency blood 

in the aftermath of earthquakes in Beijing was developed by Sha and Huang (2012). The model 

aims to minimize the total operational costs over a given planning horizon. The most recent 

study in this context is the work of Jabbarzadeh et al. (2014) who present a robust network 

design model for determining blood facility location-allocation decisions during multiple post-

disaster periods. The goal is to design a network for the cost-effective delivery of blood products 

to hospitals while ensuring that the network is robust to major disruptions. 

To the best of our knowledge, a modeling effort for blood supply chain network design 

considering tradeoffs between multiple delivery goals is non-existent. One general reason could 

be the difficulty of solving supply chain design and planning models with conflicting objectives 

(Fahimnia et al., 2015a; Fahimnia et al., 2015b; Jabbarzadeh et al., 2015). Using expert opinions, 

Gralla et al. (2014) identify five key attributes as general aid delivery goals. These include the 

amount of aid delivered, commodity type prioritization, delivery location prioritization, the speed 

of delivery, and the operational cost. While one would realize the importance of all these 

attributes in the general context of humanitarian aid supply chain management, we also 

emphasize that the choice of these goals and their degree of significance may vary depending on 

the type and nature of aid and supply chain structure. For example, delivery lead-time may play a 

key role in the emergency blood supply as delayed delivery is very likely to contribute to an 
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increased mortality rate. Alternatively, design and establishment of supply networks usually 

incur substantial irreversible costs (Esmaeilikia et al., 2014; Zokaee et al., 2014) and hence a cost 

minimization goal cannot be neglected, especially in current context of uncertain and shrinking 

infrastructure funding (Starr and Van Wassenhove, 2014). Therefore, a tradeoff between delivery 

speed and cost of designing and establishing a blood supply chain can be of paramount 

importance. This is what we try to accomplish in this paper. 

This paper contributes to the area of blood supply network design in the following ways. First, 

we present a stochastic bi-objective supply chain network design model for the efficient (cost 

minimizing) and effective (delivery time minimizing) supply of blood in disasters. Second, we 

study a realistic blood supply chain network that incorporates blood donors, mobile blood 

facilities, local blood centers, regional blood centers, and hospitals. Third, we present a hybrid 

solution approach that combines an ɛ-constraint method (converting the bi-objective model into 

a single-objective model) with a Lagrangian relaxation method (finding an optimal solution to 

the unified optimization model). A number of numerical tests are conducted to investigate (1) the 

performance of the proposed hybrid solution method, (2) possible tradeoffs between supply 

chain cost and delivery time, (3) sensitivity of the numerical results to changes in the key input 

parameters, and (4) the benefits of the two-stage stochastic programming approach.  
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3. Model Development 

3.1 Problem statement 

The supply chain under investigation comprises blood donors, mobile blood facilities, local 

blood centers, regional blood centers, and demand points including hospitals and medical 

centers. The location of mobile blood facilities (such as blood donation vehicles) may vary from 

one period to another. Blood can be donated at either a mobile blood facility or a blood center 

within a certain geographical distance, but not at the regional blood centers. The blood collected 

in mobile blood facilities is shipped to local blood centers and regional blood centers where the 

blood transfusion process is completed. These centers will then fulfill the blood demand of 

hospitals and medical centers. Regional blood centers are capable of providing all transfusion 

processes and services, but local blood centers may not offer a full range of services. In such 

cases, some of the transfusion processes of a local blood center may be directed to a pre-assigned 

regional blood center. The referral rate is the rate of services directed by a local blood center to a 

regional blood center. 

The problem is formulated as a bi-objective stochastic model to design an emergency blood 

supply chain resilient to different disaster scenarios. The first objective minimizes the total 

supply chain costs including the cost of locating mobile blood facilities, the cost of moving 

mobile blood facilities, operational cost at blood facilities, transportation cost and inventory 

holding cost. The second objective minimizes the average delivery time from mobile blood 

facilities to hospitals. The model aims to determine the following decisions at each period of the 

planning horizon: 

 The number of mobile blood facilities to be located;  

 The location of mobile blood facilities under each scenario; 

 The quantity of blood to be collected at each facility under each scenario; 

 The quantity of blood to be transported from mobile blood facilities to local and regional 

blood centers under each scenario, 

 The quantity of blood to be transported from local blood centers to regional blood centers 

under each scenario, 
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 The blood inventory level in local and regional blood centers at the end of each period under 

each scenario; and 

 The quantity of blood transported from local and regional blood centers to hospitals under 

each scenario.  

3.2 Parameters and decision variables 

The following indices, parameters and decision variables will be used for the purpose of model 

formulation. 

Indices: 

I Set of donor groups indexed by i 

J Set of candidate locations for mobile blood facilities indexed by j 

K Set of local blood centers indexed by k 

R Set of regional blood centers indexed by r 

H Set of hospitals and medical centers indexed by h 

S Set of disaster scenarios indexed by s 

T Set of time periods indexed by t 

Parameters: 

f  Fixed cost of establishing a mobile blood facility 

s

jltv  
Cost of moving a mobile blood facility from location l to location j in period t 

under scenario s 

s

ijto  
Unit operational cost at mobile blood facility j from donor group i in period t 

under scenario s 

s

ktob  Unit operational cost at local blood center k in period t under scenario s 

  s

r to r  Unit operational cost at regional blood center r in period t under scenario s 

s

jktab  
Unit transportation cost from mobile blood facility j to local blood center k in 

period t under scenario s 
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s

jrtar  
Unit transportation cost from mobile blood facility j to regional blood center r in 

period t under scenario s 

s

krabr  
Unit transportation cost from local blood center k to regional blood center r in 

period t under scenario s 

s

khtarh  
Unit transportation cost from local blood center k to hospital h in period t under 

scenario s 

s

rhtabh  
Unit transportation cost from regional blood center j to hospital h in period t under 

scenario s 

kthb  Unit holding cost at local blood center k in period t 

rthr  Unit holding cost at regional blood center r in period t 

s

htd  Blood demand at hospital h in period t under scenario s 

jktb  Travel time from mobile blood facility j to local blood center k 

jrtr  Travel time from facility j to regional  blood center r 

krtc
 

Travel time from local blood center k to regional  blood center r 

rhtq  Travel time from regional blood center r to hospital h 

khtp  Travel time from local blood center k to hospital h 

b  Capacity of a mobile blood facility  

kcb  Storage capacity of local blood center k 

 rc r  Storage capacity of regional blood center r 

s

im  Maximum blood supply of donor group i under scenario s 

ijrr  Distance between donor i and mobile blood facility j 

ikrb  Distance between donor i and local blood center k 

rc Coverage distance of blood facilities 

s  Probability of scenario s occurrence 
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  
Referral rate: the rate at which services of local blood centers are directed to 

regional  blood centers 

M A very large number 

Decision variables: 

 X An integer variable equal to the number of blood facilities 

s

jltZ
  

A binary variable, equal to 1 if a blood facility is located at site l in period t–1,and 

moves to site j in period t; 0 otherwise. 

s

ijtY
  

A binary variable, equal to 1 if blood facility j is assigned to donor i in period t 

under scenario s; 0, otherwise. 

s

iktU
 
 

A binary variable, equal to 1 if local blood center k is assigned to donor i in period 

t under scenario s; 0, otherwise. 

s

krtAL  
A binary variable, equal to 1 if local blood center k is allocated  to regional blood 

center r in period t under scenario s ; 0 otherwise 

s

ijktQB  
Quantity of blood collected at blood facility j from donor i in period t to deliver to 

local blood center k under scenario s 

s

ijrtQR  
Quantity of blood collected at blood facility j from donor i in period t to deliver  to 

regional blood center r under scenario s 

s

iktOQ  
Quantity of blood collected at local blood center k from donor i in period t under 

scenario s 

s

krtBTR  
Quantity of blood delivered  from local blood center k to regional blood center r in 

period t under scenario s 

s

khtQBH  
Quantity of transfused blood delivered  from  local blood center k to hospital h in 

period t under scenario s 

s

rhtQRH  
Quantity of transfused blood delivered  from  regional blood center r to hospital h 

in period t under scenario s 

s

ktIB  Blood inventory level at local blood center k at the end of period t under scenario s 

s

rtIR  
Blood inventory level at regional blood center k at the end of period t under 

scenario s 
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The problem is formulated as a two-stage stochastic programming model using a set of disaster 

scenarios. In a two-stage programming approach (Birge and Louveaux, 2011), decision variables 

are divided into two categories: first-stage decisions and second-stage decisions. The first stage 

decisions are not reliant on the disaster scenario realization and can be taken before a scenario is 

realized. Second-stage decisions are scenario-dependent variables and are hence made post 

scenario realization. In our model, decision variable X (the number of blood facilities) is 

scenario-independent and hence its value can be determined in stage 1. The values of all other 

decision variables are determined in stage 2 depending on what disaster scenarios occurs. 

3.3 Objective functions 

The first objective function minimizes the expected cost of the supply chain. The supply chain 

cost components under each scenario include the cost of establishing blood facilities ( EC ), cost 

of moving mobile blood facilities ( sMC ), operational cost ( sOC ), transportation cost ( sTC ) and 

inventory cost ( sIC ), formulated in Equations (1)-(5). 

cost of establishing mobile blood facilities( )EC fX                                                            (1) 

(cost of moving mobile blood facilities) s s

s jlt jlt

l J j J t T

MC v Z
  

                                          (2) 

(operational cost) ( )s s s

s ijt ijkt ijrt

i I j J t T k K r R

s s s s s s

kt ijkt ikt rt ijrt krt

k K t T i I j J i I r R t T i I j J k K

OC o QB QR

ob QB OQ or QR BTR

    

         

 

   
      

   

  

     
              (3) 

(transportation cost) s s s s

s jkt ijkt jrt ijrt

i I j J k K t T i I j J r R t T

s s s s s s

krt krt kht kht rht rht

k K r R t T k K h H t T r R h H t T

TC ab QB ar QR

abr BTR abh QBH arh QRH

       

        

 

  

 

  
 (4) 

 inventory cost s s

s kt kt rt rt

k K t T r R t T

IC hb IB hr IR
   

                                               (5) 

The cost of establishing blood facilities in Equation (1) is obtained by multiplying the cost of 

establishing a mobile blood facility by the number of established blood facilities. Equation (2) 



12 

 

formulates the cost of moving blood facilities from one site to another in different periods. 

Equation (3) expresses the sum of operational costs at mobile blood facilities, local blood centers 

and regional blood centers. Equation (4) calculates the total transportation costs including the 

transportation costs of delivering blood from mobile blood facilities to local and regional blood 

centers, from local blood centers to regional blood centers, and from local and regional blood 

centers to hospitals. Equation (5) shows the total cost of holding blood inventories at blood 

centers and regional blood centers. Using these cost components, the first objective function 

(cost function) is now formulated in Equation (6). 

 1 s s s s s

s S

Min F EC MC OC TC IC


       (6) 

The second objective function aims to minimize the average blood delivery time from local and 

regional blood centers to hospitals. The two components of the second objective function are 

formulated in Equations (7) and (8). 

 weighted-time for blood delivery through local blood centerss

s s

ijkt jk kht kh

i I j J k K t T k K h H t T

TDB

QB tb QBH tp
      

  
 (7) 

 weighted-time for blood delivery through regional blood centerss

s s s

ijrt jr krt kr rht rh

i I j J r R t T k K r R t T k K h H t T

TDR

QR tr BTR tc QRH tq
         

    
   (8) 

Equation (7) shows the weighted travel time for the delivery of blood to hospitals through local 

blood centers, where blood quantities are considered as weights. The first term of Equation (7) 

corresponds to the time of blood delivery from mobile blood facilities to local blood centers and 

the second term concerns the time from local blood centers to hospitals. Equation (8) measures 

the weighted-time for blood delivery to hospitals through regional blood centers. The first two 

terms of Equation (8) capture the delivery time to regional blood centers from mobile blood 

facilities and local blood centers, respectively. The third term formulates the blood delivery time 

from regional blood centers to hospitals. Using Equations (7) and (8), we now formulate the 

second objective function in Equation (9). 
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 2 s s s

s S

Min F TDB TDR


                                                                                                 (9) 

3.4 Model constraints 

The objective functions formulated in Section 3.3 are subject to the following constraints.  

,s

jlt

j J l J

z X t T s S
 

                         (10) 

1 , ,s

jlt

l J

z j J t T s S


                           (11) 

, 1 , ,s s

ljt jl t

l J l J

z z j J t T s S

 

          (12) 

, , ,s s

ijt jlt

l J

Y z i I j J t T s S


           (13) 

,s s s s

ijkt ijrt ikt i

j J k K t T j J r R t T k K t T

QB QR OQ m i I s S
         

               (14) 

, ,s s

ijkt ijrt

i I k K i I r R

QB QR b j J t T s S
   

           (15) 

, , , ,s s

ijkt ijtQB MY i I j J k K t T s S             (16) 

, , , ,s s

ijrt ijtQR MY i I j J r R t T s S             (17) 

, , ,s s

ikt iktOQ MU i I k K t T s S           (18) 

, , ,s

ij ijtrr Y rc i I j J t T s S            (19) 

, , ,s

ik iktrb U rc i I k K t T s S         
                (20) 

1 , ,s

krt

r R

AL k K s S t T


        (21) 

 , , ,s s

krt krtBTR M AL k K r R t T s S          (22) 

, , ,s s s

krt ijkt ikt

i I j J i I

BTR QB OQ k K r R t T s S
  

 
          

 
    (23) 

, 1 (1 ) , ,s s s s s

k t ijkt ikt kht kt

i I j J i I h H

IB QB OQ QBH IB k K t T s S

   

 
           

 
     (24) 
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, 1 ( ) , ,s s s s s

r t ijrt krt rht rt

i I j J k K h H

IR QR BTR QRH IR r R t T s S

   

              (25) 

, ,s s s

kht rht ht

k K r R

QBH QRH d h H t T s S
 

           (26) 

, ,s

kt kIB cb k K t T s S         (27) 

, ,s

rt rIR cr r R t T s S         (28) 

,U , {0,1} , , , , ,s s s

ijt ikt krtY AL i I j J k K r R t T s S                            (29) 

, , , , , , , 0 , , , , ,s s s s s s s s

ijkt ijrt kht rht krt kt rt iktQB QR QBH QRH BTR IB IR OQ i I j J k K r R t T s S              (30) 

X  Integer                                                                                                                                     (31) 

Constraint (10) ensures that the number of mobile facilities in each period does not exceed the 

number of established blood facilities. Constraint (11) enforces locating no more than one mobile 

facility at each site. Constraint (12) makes sure that mobile facilities do not move to a location 

where a facility has been located before. Constraint (13) ensures that donors can only be assigned 

to open facilities. Constraint (14) expresses the capacity of blood supply by each donor group. 

Constraint (15) limits the capacity of blood collection at mobile blood facilities. Constraints (16) 

and (17) ensure the donated blood cannot be transported from a mobile facility that is not 

assigned to that donor group. Constraint (18) avoids collecting blood at local blood centers from 

donor groups not assigned to those blood centers. Constraints (19) and (20) ensure that mobile 

blood facilities and local blood centers only accept donors within their service area. Constraint 

(21) enforces that each local blood center is assigned to one regional blood center. Constraint 

(22) ensures that blood cannot be transported from a local blood center to a regional blood center 

which is not assigned to it. Constraint (23) shows that a local blood center has to direct β percent 

of their transfusion services to regional blood centers. Constraints (24) and (25) represent blood 

inventory balance constraints at local and regional blood centers, respectively. Constraint (26) 

ensures that blood demands in hospitals are fulfilled under each scenario. Constraints (27) and 

(28) express the capacities for storing blood at local and regional blood centers, respectively. 

Constraints (29)-(31) define the eligible domains of the decisions variables. 
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4. A Hybrid Solution Method 

The bi-objective model presented in Section 3 can be transformed into a single-objective model 

using the co-called ɛ-constraint method. Solving the resulting single-objective model usually 

takes an excessively long time (even for average size problems) using the standard solution 

approaches. A Lagrangian relaxation approach can be utilized to solve this model within a 

reasonable length of time. Therefore, the hybrid solution method is made of combining the ɛ-

constraint method and a Lagrangian relaxation method. 

4.1 Stage 1: Conversion to a single-objective model 

We use an ɛ-constraint method to convert the bi-objective model presented in Section 3 into a 

single-objective optimization model. The ɛ-constraint method, first introduced by (Haimes et al., 

1971), is one of the most popular multi-objective optimization programming methods. In the ɛ-

constraint method, all objectives except for one are converted into constraints and an upper 

bound limit is set for each constraint. The method works by pre-defining a virtual grid in the 

objective space and solving different single-objective problems constrained to each grid cell. 

Thus, all Pareto-optimal solutions can be obtained if this grid is fine enough such that at most 

one Pareto-optimal solution is contained in each cell (Laumanns et al., 2006; Mavrotas, 2009). 

The idea is to overcome the complexity of solving a multi-objective model by minimizing or 

maximizing one objective at a time and expressing the other objectives in form of inequality 

constraints. Let us consider a multi objective problem with K objective functions as below: 

        1 2( , ,... )X KMin F x F x F x F x  ,                           (32) 

where X is the vector of decision variables,  F x  is the vector of K objective functions, and   is 

the space of feasible solutions. Based on the ɛ-constraint method, the multi-objective problem in 

Equation (32) can be converted into a single-objective model in Equations (33) and (34) in which 

only the primary objective function  kF x  is minimized and the remaining objective functions 

are expressed as model constraints with enforcing upper bounds.  
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 X kMin F x                                                               (33) 

     1,2,..., \i i

subject to

F x i K k  
                                                                                        (34) 

Applying the ɛ-constraint method to our bi-objective model, we keep the first objective function 

(cost function in Equation (6)) as the primary objective function and transform the second 

objective function (time function in Equation (9)) into a constraint with upper bound ɛ, hereafter 

called time tolerance (Demand*Hour). Thus, the bi-objective model is now converted into the 

following single-objective model: 

1Min F    (35) 

 s s s

s S

Subject to

TDB TDR 


     (36) 

Constraints (10)-(31) 

4.2 Stage 2: Solving the single-objective model 

The single objective model presented in Section 4.1 is a large mixed-integer programming 

problem that resembles an Uncapacitated Facility Location Problem (UFLP). Since the UFLP is 

NP-hard (see Krarup and Pruzan (1983)), it is not possible to solve the large problem instances in 

polynomial time using standard solution methods (Hinojosa et al., 2008). For this reason, we 

adopt a Lagrangian relaxation approach to solve the unified optimization model. Lagrangian 

relaxation is a powerful solution method with demonstrated applications in solving supply chain 

combinatorial optimization problems (see for example Diabat et al. (2014), Kang and Kim 

(2012), Badri et al. (2013) and Jayaraman and Pirkul (2001)). The method is capable of 

providing upper and lower bounds of an optimal objective value allowing a decision maker to 

estimate the quality of solutions and realize how far a best found feasible solution is from the 

optimality (Fisher, 2004). 

The Lagrangian relaxation method that we adopt in this paper operates in three steps, (1) finding 

a lower bound for optimal solutions, (2) obtaining an upper bound for optimal solutions, and (3) 
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updating the upper and lower bounds if they are not sufficiently close. The steps are iterated until 

the lower and upper bounds reach certain closeness. We now discuss these three steps for solving 

the unified optimization model introduced in Section 4.1. 

4.2.1 Finding a lower bound 

A lower bound is obtained by relaxing few constraints that make the problem easier to solve 

even if it causes infeasibility (see Fisher (2004)). In this case, we choose to relax constraints (22) 

and (23) as the resulting model will be easier to solve. Relaxing these constraints produces the 

following Lagrangian dual problem: 

 

 

1 2

1

2

 ( , )

 

krts krts s s s s s

s S

s s

krts krt krt

k K r R t T s S

s s s

krts krt ijkt ikt

k K r R t T s S i I j J i I

Min L u u EC MC OC TC IC

u BTR M AL

u BTR QB OQ



   

      

     

 

  
    

  





  





            (37)        

Subject to: Constraints (10) to (21), constraints (24) to (31), and constraint (36)                                                                                                 

Where 
1

krtsu  and 
2

krtsu  denote non-negative Lagrange multipliers. For fixed values of the 

Lagrange multipliers, 
1

krtsu  and
2

krtsu , we aim to minimize Equation (37) over decision variables 

,U , , , , , , , , ,s s s s s s s s s s

ijt ikt krt ijkt ijrt kht rht krt kt rtY AL X QB QR QBH QRH BTR IB IR and
s

iktOQ . Optimal objective value 

of the Lagrangian dual problem (37) provides a lower bound to the problem (Fisher, 2004). 

4.2.2 Finding an upper bound  

In most cases, the solution obtained from solving Lagrangian dual problem (37) is infeasible due 

to relaxing constrains (22) and (23). A feasible solution can be found as follows. We solve the 

minimization model (35) under constraints (10)-(31) and (36) when setting the decision variables 

X equal to optimal values obtained from solving the Lagrangian dual problem (37). The resulting 

feasible solution provides an upper bound for the model (35).   
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4.2.3 Updating lower and upper bounds  

If the obtained lower bound is equal to the upper bound within some pre-specified tolerance, a 

desirable solution to model (35) under constraints (10)-(31) and (36) is already found. Otherwise, 

the Lagrange multipliers 
1

krtsu  and 
2

krtsu  are updated and consequently the new lower and upper 

bounds are found. We assign values to the Lagrange multipliers at iteration n+1, using 

subgradient optimization described by Fisher (2004) as follows. 

   1, 1 1,max 0, 1  n n n s s

krts krts krt krtu u stepsize BTR M AL       (38) 

2, 1 2,max 0, 2n n n s s s

rts rts krt ijkt ikt

i I j J i I

u u stepsize BTR QB OQ

  

    
       

    
    (39) 

Where n denote the number of iteration and 1nstepsize  and 2nstepsize are defined as below. 

 

 
2

1
 

n n

n

s s

krt krt

r R k K t T s S

UP LB
Step size

BTR M AL
   







   (40) 

 
2

2

n n

n

s s s

krt ijkt ikt

r R k K t T s S i I j J i I

UP LB
Step size

BTR QB OQ
      




  
    

  
  





  (41) 

We note that UP is the best found upper bound and 
nLB  is the lower bound obtained at iteration 

n. We initially set α = 2 and if no improvement in LB is achieved for four consecutive iterations, 

then α is halved. This process continues until a feasible solution with the desired tolerance is 

obtained or the minimum value of the step-size is reached. 
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5. Computational Results 

We design a set of test experiments to (1) evaluate the performance of the proposed hybrid 

solution method, (2) investigate possible tradeoffs between supply chain cost and delivery time, 

and (3) examine the benefits of the two-stage stochastic programming approach by comparing its 

performance against that of an expected value approach. Three random datasets are generated 

with different sizes as shown in Table 1. General Algebraic Modeling System (GAMS) – version 

24.1 – is used for problem modeling and optimization. GAMS utilizes a language compiler and a 

range of integrated high-performance solvers for modeling and solving complex, large scale 

optimization problems. 

 

Table 1. Characteristics of the three datasets used in all experiments 

 |I| |J| |K| |R| |H| |T| |S| 

Dataset 1 6 4 3 3 3 3 5 

Dataset 2 10 8 5 5 10 5 10 

Dataset 3 12 10 8 8 15 7 15 

 

5.1 The initial numerical results 

For the three datasets, Table 2 presents the numerical results obtained using the hybrid solution 

method at different referral rate (β) and time tolerance (ɛ) values. From left to right, the columns 

named “UB” and “LB” show respectively the upper and lower bounds obtained from the 

Lagrangian method. The column labelled “Gap” is the percentage difference between the upper 

bound and lower bound, which is calculated from 100.
UB LB

UB


 Model runtime is given in 

the next column. Whilst GAMS was unable to provide feasible solutions for datasets 2 and 3 

within 48 hours of model runtime, the hybrid solution method was capable of reaching optimal 

solutions in all the instances within a reasonable length of time (given the strategic type of 

decisions facing). High-quality solutions that are close-to-optimal could be obtained within a 
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shorter runtime by setting the termination condition at some values for GAP, rather than looking 

for zero-gap solutions. 

 

Table 2. The numerical results for all datasets  

Dataset     LB UP GAP Runtime  

D
at

as
et

 1
 

0.1 2612 4002367 4002367 0.00 0:00:21 

0.2 2530 4002855 4002855 0.00 0:00:17 

0.3 2473 4003282 4003282 0.00 0:00:19 

0.4 2419 4003728 4003728 0.00 0:00:13 

0.5 2374 4004194 4004194 0.00 0:00:19 

0.6 2333 4004620 4004620 0.00 0:00:41 

0.7 2264 4005106 4005106 0.00 0:00:52 

0.8 2212 4005536 4005536 0.00 0:00:24 

0.9 2170 4005962 4005962 0.00 0:01:02 

D
at

as
et

 2
 

0.1 125237 29263118 29263118 0.00 3:51:39 

0.2 127124 33011821 33011821 0.00 4:10:12 

0.3 130098 35547428 35547428 0.00 1:45:19 

0.4 133374 36755610 36755610 0.00 2:49:38 

0.5 136749 37137913 37137913 0.00 0:31:59 

0.6 141197 36608040 36608040 0.00 0:01:15 

0.7 147235 35430071 35430071 0.00 0:06:18 

0.8 152894 34775230 34775230 0.00 0:16:26 

0.9 159148 32524430 32524430 0.00 0:23:10 

D
at

as
et

 3
 

0.1 254064 116010000 116010000 0.00 5:22:39 

0.2 269348 134395600 134395600 0.00 2:10:02 

0.3 292887 149218300 149218300 0.00 3:18:36 

0.4 318227 161072130 161072130 0.00 5:51:23 

0.5 354652 162926100 162926100 0.00 7:25:52 

0.6 391540 150705200 150705200 0.00 1:33:30 

0.7 419598 135299100 135299100 0.00 0:47:16 

0.8 440658 123380000 123380000 0.00 4:08:44 

0.9 457410 114713900 114713900 0.00 5:26:50 
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5.2 Tradeoff between cost and delivery time  

We now examine the impact of varying time tolerance (ɛ) on the supply chain costs. Such 

analyses enable a decision maker to explore the tradeoff between supply chain cost and delivery 

time (noting that ɛ represents the maximum blood delivery time). For the three datasets, the 

tradeoffs between cost and delivery time (Demand*Hour) are illustrated in Figures 1. A first 

observation is that for all three datasets the supply chain cost decreases as time tolerance rises. 

This finding could be expected as faster delivery does not come free. What is interesting is the 

pattern of cost change for different datasets and at different ranges of time tolerance. A decrease 

in the value of ɛ causes a relatively linear total supply chain cost increases in all instances, but 

the line steepness varies from one dataset to another and for different ranges of ɛ values. In other 

words, the relationship between cost and delivery time is a function of supply chain size and the 

range of changes in time tolerance. Note that supply chain size is represented by different 

datasets where dataset 3 corresponds to the largest network. Another insight from these findings 

is that there may be more potential to gain significant delivery speed improvements at only 

minor increases in supply chain costs. For example, for dataset 1, a minor increase in supply 

chain cost results when the time tolerance reduces from 2,335 to 2,330 (compare this to the next 

range of time tolerance values when ɛ changes from 2,330 to 2,325).  

Overall, Figure 1 suggests that compromise solutions may exist between supply chain cost and 

time tolerance. In the following sections, we complete sensitivity analysis experiments seeking 

opportunities to simultaneously improve the supply chain cost and delivery performance. 
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5.3 Sensitivity analysis on the referral rate  

This section aims to examine the changes in supply chain configuration, cost, and delivery 

performance as the referral rate is increased. A larger referral rate means that more transfusion 

services are directed to regional blood centers. Note that a referral rate of 0.3 implies that 70% of 

transfusion operations are completed in local blood centers and 30% referred to regional blood 

centers. For the three datasets, Table 3 shows optimal supply chain cost and configuration at 

different referral rates. The experiments are completed for fixed time tolerance of the three 

datasets (i.e. a fixed service level). What is evident in these results is that greater referral rates 

result in increased supply chain costs and more open facilities are required to maintain the same 

service level. Thus, it is more worthwhile to reduce the referral rate by improving the 

dependency of local blood centers to regional centers. The impacts on supply chain cost and 

configuration are more pronounced in larger datasets. 

For a budget-constrained situation, Table 4 shows the impacts of increased referral rates on the 

blood delivery performance. We observe that a larger referral rate results in an increased delivery 

time, mainly due to the additional transportation time required for completing the blood 

transfusion in multiple locations. The delivery performance can be improved as much as 45% by 

choosing a very small referral rate. Similar to the cost performance in Table 3, changes in 

delivery time performance are more pronounced with larger datasets. What is obvious from 

Tables 3 and 4 is that establishing more independent local blood centers, less reliant on the 

services of regional centers, is an efficient (cost measure) and effective (time measure) strategy. 

Performing more transfusion operations in local blood centers to reduce the referral rate may 

require additional investment to expand the transfusion operations in local blood centers. The 

investment margins can be drawn from the corresponding cost savings. For example, for the 

largest problem (dataset 3), the supply chain yields a cost saving of $14,049,000 (i.e. 

$100,793,000 minus $114,842,000), equal to 12.2% of the overall supply chain cost, when the 

referral rate reduces from 40% to 30%. This cost saving is the marginal investment the supply 

chain will be willing to pay to reduce the referral rate by 10%. We recognize that such findings 

may be problem-specific, but here we have tried to illustrate how the model and solution method 

introduced in this paper can be used for analyzing such a tradeoff. 
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5.4 Sensitivity analysis on the storage capacity of facilities 

We now complete a sensitivity analysis to examine whether adjustments in facility storage 

capacity can be used as a strategy to improve supply chain cost and service level. Figure 2 

illustrates changes in supply chain cost over a range of storage capacity levels. A general 

observation is that increased storage capacity in blood facilities results in reduced supply chain 

cost. Similar patterns can be observed for the three datasets; however, the magnitude of cost 

savings is not proportionate to the network size (i.e. the curve for dataset 3 is steeper than that of 

dataset 1 which in turn is steeper than dataset 2 curve). The cost savings (curve steepness) is 

indeed a function of “inventory cost over transportation cost” ratio. Dataset 3 holds the lowest 

ratio implying a greater transportation cost and smaller inventory cost which allows the network 

to take advantage of increased capacity of facilities to reduce the frequency and quantity of 

shipments between supply chain nodes. 

No significant impact on the supply chain delivery time could be observed for the same changes 

in facility capacity. This is unlike changes in referral rate which was shown to significantly 

influence both supply chain cost and delivery time performance. 

 

 

Figure 2. The impact of facility capacity change on the total supply chain cost  
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5.5 Benefit of facility location mobility 

This section aims to investigate how the supply chain benefits from a facility location mobility 

feature. For this experiment, we compare the supply chain cost in two situations: (1) static 

facility location where the locations of blood facilities are fixed in all planning periods, and (2) 

dynamic facility location where facilities are mobile, so they can be relocated at each period 

based on the network requirements. Obviously, a dynamic network offers more supply flexibility 

and hence results in smaller transportation and inventory holding costs. This makes a dynamic 

facility location a cheaper option, if the “cost of flexibility” (i.e. the costs associated with 

frequent relocation of facilities) is not taken into consideration. For the three datasets, Figure 3 

illustrates the marginal cost differences between the static and dynamic facility location options 

over a range of referral rates. We observe that cost saving from a dynamic facility location 

option would be as large as 10% at greater referral rates. A greater referral rate implies more 

frequent travels from local to regional blood centers. The need for these frequent trips is less 

when facilities are mobile and can be positioned in more convenient locations. The reduced 

transportation cost is the primary advantage of the dynamic facility location option. 

The cost difference between static and dynamic facility location options can be used as an 

estimation tool for determining the cost of flexibility. For example, for dataset 2 at the referral 

rate of 0.6, one would be willing to accept a marginal supply chain cost increase of 9% to 

improve the network flexibility. That is, the conversion from a static to dynamic facility location 

option would only be worthwhile if the associated facility relocation costs do not add more than 

9% to the supply chain costs. It should be noted that at each referral rate, the cost difference is 

obtained through a tradeoff analysis between the two ratios of “transportation cost to total cost” 

and “cost of moving facilities to total cost”. 
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Figure 3. The percentage of cost saving obtained from a facility mobility option 

 

 

5.6 Benefit of stochastic programming approach 

One way to investigate the benefits of the proposed two-stage stochastic programming approach 

is to compare its performance against that of an expected value approach. To do so, we use a 

measure called Value of the Stochastic Solution (VSS) introduced by Birge (1982). VSS can be 

formulated as: 

VSS = EEV – RP,                                                 (42) 

where EEV and RP denote the objective values under expected value and stochastic 

programming approaches, respectively. RP is the optimal objective value of the model (35) 

under constraints (10)-(31) and (36). To obtain EEV, the expected values of uncertain parameters 

are first calculated. Then, model (35) is solved under constraints (10)-(31) and (36) by setting the 

values of the random parameters equal to their expected values. The solution obtained from 
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approach. Finally, model (35) is solved again under constraints (10)-(31) and (36) by using 

original demand data and setting the number of mobile blood facilities equal to the optimal 

number of blood facilities (X) obtained in the previous step.    

For our three datasets, Figures 4 show changes in VSS values over a range of referral rates (β). 

For all datasets and regardless of the β value, these results indicate that the stochastic 

programming approach clearly outperforms an expected value approach, evidenced by the 

positive values for VSS in all figures (from Equation (42), a positive value for VSS implies that 

      ). This experiment can also be treated as a sensitivity analysis for examining the value 

of a stochastic programming over a range of referral rates. The benefits of the stochastic 

programming approach increases as the referral rate gets larger. The cost benefits do not follow a 

similar pattern in different datasets. For example, Figure 4b shows that for dataset 2, greater 

benefits are obtained at initial increases in the referral rate. This is not the case for datasets 1 and 

3 where the stochastic programming approach has a stronger dominance at larger β values. 

Overall, the proposed stochastic programming approach does show a clear dominance over an 

expected value approach, yet the scale of this dominance is a function of supply chain size and 

its parametric properties, including cost parameters.  
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6. Conclusions 

Natural disasters are increasing in frequency and intensity and their direct human impacts are 

pronounced more than ever before. History also records a continuous stream of anthropogenic 

catastrophes causing thousands of deaths and injuries every year. The emergency supply of blood 

in such disasters has proved challenging. This paper contributes to this area of research by 

presenting a stochastic bi-objective supply chain network design model for the efficient and 

timely supply of blood in disasters. The first objective minimizes the overall supply chain costs 

(efficiency factor) and the second objective minimizes the blood delivery time (effectiveness 

factor). In the proposed two-stage stochastic model, stage 1 decisions (the number of blood 

facilities to open) are made when no knowledge of disaster is available, and stage 2 decisions 

(blood collection and transportation quantities and inventory levels) are determined when a 

disaster scenario is realized. 

A hybrid solution approach was presented that combines an ɛ-constraint method with a 

Lagrangian relaxation approach. The ɛ-constraint method transforms the bi-objective model into 

an equivalent single-objective model for which the Lagrangian relaxation approach can find an 

optimal solution. The numerical results provided a number of insights. Particularly, we find that 

(1) the proposed solution approach is able to find quality solutions to problems of different sizes 

within reasonable model runtimes, (2) the stochastic programming approach outperforms an 

expected value approach regardless of the problem size and complexity, (3) the relationship 

between cost and delivery time is a function of supply chain size and time tolerance, (4) 

adjustments in referral rate (the rate at which transfusion services are directed to regional blood 

centers) and the capacity of blood facilities can be used to improve the supply chain cost and 

delivery time performance, and (5) the proposed model and solution technique can be used for 

cost/benefit analysis to identify the areas and operations along the supply chain where 

investments can be made for improved supply chain efficiency and effectiveness.   

The modeling effort in this paper can set the stage for additional research in the area of blood 

supply chain management. The call for increased management research in the area of disaster 

relief operations management has been widely acknowledged (Caunhye et al., 2012; Starr and 
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Van Wassenhove, 2014; Wassenhove, 2006). Despite this, scanty modeling efforts exist to 

address serious challenges facing governments and humanitarian aid agencies. Not only can such 

modeling efforts save lives and reduce suffering for people affected by disasters, but the lessons 

learnt can also provide insights for the design and management of more responsive supply chains 

when facing supply and demand disruptions. 

Future research could investigate the application of the model and solution method presented in 

this paper to managing actual blood supply chain challenges. The academic research currently 

suffers from the absence of such all-inclusive disaster data. Given the reducing funding for 

humanitarian and disaster relief efforts and hence shrinking infrastructure and network design 

budgets, a direction for future work could be on prioritizing supply chain operations to which 

additional funds should be assigned for designing more resilient and responsive blood supply 

networks. In addition, more sophisticated models and solution techniques are required for 

delivery of relief supplies when disasters affect multiple facilities in a healthcare system, as is 

often the case. In addition, the clear focus of our study was on the quick response phase of 

disaster management; that is, the emergency supply of blood products immediately after 

disasters. Future research can complete similar analysis and tradeoff investigations for other 

disaster management phases, which may involve the incorporation of additional factors and 

performance measures. For example, the more explicit consideration of blood perishability can 

be of paramount importance in the reconstruction phase of disaster management. 
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Highlights 

 A stochastic bi-objective supply chain design model for supply of blood in disasters; 

 Considering efficiency (cost) and effectiveness (delivery time) goals; 

 Modeling effort motivated by real world parameters, variable and constraints; 

 A solution approach combining ɛ -constraint and Lagrangian relaxation methods; 

 Managerial insights and practical implications obtained from the numerical results. 

 

 


